

Team Redmond

Design Document

Version 1.8

TEAM MEMBERS

Name Student ID

Stefan Thibeault 4498852
Robert Hanna 4737997
Simon Lacasse 5946964
Alexandre Bosserelle 5253217
Eugena Zolorova 4349598
Zhi Zhang 4912047
Xin Xi 4634799
Patrice Michaud 4701445
Hu Shan Liu 4815386
Jens Witkowski 5253969

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 2

Revision History
Date Version Description Author

9-10-03 1.0 Document start Stefan Thibeault

10/12/03 1.1 Added comments describing what needs to
be done for each section.

Robert

19/10/2003 1.2 Added section 4.2 “View” module Robert

20/10/2003 1.3 Integrated section 4.1 “Model” module Robert

21/10/2003 1.4 Integrated the remainder of section 4.1 Robert

22/10/2003 1.5 More Corrections Robert, Zhi, Stefan

22/10/2003 1.6 Added section 3.3 – Dynamic Models Robert

23/10/2003 1.7 Integrated sections 2, 3.2 and 4.3 Robert, Zhi, Stefan

23/10/2003 1.8 Added Appendix A Robert, Zhi, Stefan

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 3

Table of Contents
1. Introduction 5

1.1 Purpose 5
1.2 Scope 5
1.3 Definitions and Abbreviations 5

1.3.1 Definitions 5
1.3.2 Abbreviations 6

1.4 References 6
1.5 Overview 6

2. Architectural Design 7
2.1 Rationale 7
2.2 Software Architecture Diagram 8
2.3 System Topology 8

3. Software Interface Design 9
3.1 System Interface Diagrams 9

3.1.1 User Interface 9
3.1.2 Software Interface 26
3.1.3 Hardware Interface 26

3.2 Module Interface Diagrams 27
3.2.1 View Interface 27
3.2.2 Model Interface 29
3.2.3 Controller Interface 30

3.3 Dynamic Models of System Interface 31
3.3.1 Start Game Scenario 31
3.3.2 Roll Dice Scenario 32
3.3.3 Buy Property Scenario 33
3.3.4 Build Hotel Scenario 34
3.3.5 Declare Bankruptcy Scenario 35

4. Internal Module Design 36
4.1 Module <Model> 36

4.1.1 Module Class Diagram 37
4.1.2 Class <Board> 38
4.1.3 Class <Player> 41
4.1.4 Class <JFLDeck> 49
4.1.5 Class <JFLCard> 50
4.1.6 Class <Dice> 53
4.1.7 Class <Cell> 53
4.1.8 Class <Property> 55
4.1.9 Class <Street> 57
4.1.10 Class <Metro> 59
4.1.11 Class <Utility> 61
4.1.12 Class <Go> 62
4.1.13 Class <Jail> 63
4.1.14 Class <OlympicPark> 63
4.1.15 Class <GoToJail> 64
4.1.16 Class <JFL> 65
4.1.17 Class <IncomeTax> 65

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 4

4.1.18 Class <LuxuryTax> 66
4.1.19 Artificial Intelligence (AI) 68

4.2 Module <View > 75
4.2.1 Module Class Diagram 76
4.2.2 Class <GameStart> 76
4.2.3 Class <MainWindow> 77
4.2.4 Class <JFLCardWindow> 83
4.2.5 Class <CellInfoWindow> 84
4.2.6 Class <TradeWindow > 88
4.2.7 Class <GameEndWindow > 90

4.3 Module <Controller > 91
4.3.1 Module Class Diagram 91
4.3.2 Event Handlers 92

5. Team Members Log Sheets 95
5.1 Stefan Thibeault 95
5.2 Robert Hanna 95
5.3 Simon Lacasse 95
5.4 Alexandre Bosserelle 96
5.5 Eugena Zolorova 96
5.6 Zhi Zhang 96
5.7 Xin Xi 97
5.8 Patrice Michaud 97
5.9 Hu Shan Liu 97
5.10 Jens Witkowski 97

6. Appendix A – Game Flow 98
6.1 Start Game Scenario 99
6.2 Play Game Scenario 100
6.3 Pre-roll Dices 101
6.4 Roll Dices 103
6.5 Post-roll Dices 105
6.6 End Game Scenario 106

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 5

 Design Document

1. Introduction
The primary goal of this project is to develop the Montrealopoly game. This game is based on the original
Monopoly© game, with some modifications. Some of the original rules of the game have been changed.
Further, the game board and cell names have been modified to a Montreal-based theme.

The purpose of this design document is to provide all details of the Architectural Design (AD), Module
Interface Design (MID), and Internal Module Design (IMD) for the Montrealopoly game. The AD part
focuses on the high-level project decomposition, the MID focuses on the software interfaces between the
high level modules, and the IMD focuses on the low level description of the implementation classes and all
their attributes and methods.

1.1 Purpose
The purpose of this document is to present the design of the Montrealopoly game, which is in partial
fulfillment of the requirements of COMP 354. It will provide details on the architectural design, the
software interface design, and the internal module design. The architectural design will describe the
software architecture that was chosen for the game and a class diagram of this architecture. The software
interface design will have screen shots of the graphical user interface and how the users interact with the
game. Finally, the internal module design will describe in detail the different modules through the use of
class diagrams. This document is intended primarily for the members of Team Redmond and the project
coordinator, Dr. Joey Paquet, as it will serve as a basis for the final phase of the project.

1.2 Scope
This document is intended to provide detailed design specifications of the Montrealopoly game that will be
used as a basis for the implementation phase. The software architecture that will be used will be explained
in great detail in order for the implementation team to actually create a game based on the software
architecture described in this document. Furthermore, screen shots of the game will provide a basis for the
actual graphical user interface used in the game. The class diagrams from the Internal Module Design
section will be converted to Visual Basic code using Rational Rose. This code will then be used by the
implementation team to develop the game.

1.3 Definitions and Abbreviations

1.3.1 Definitions

Term Definition
Model View
Controller

The architecture used in the Montrealoploy game, consisting of three individual
components, the model, view and controller, which can be developed separately.

JFL Card JustForLaughs Card. A card containing instructions, which must be followed by
the player if they land on the JFL cell.

JFL Deck A deck containing 20 JFL cards.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 6

1.3.2 Abbreviations

Abbreviation Term
OS Operating System
FIFO First In First Out
MVC Model View Controller
JFL Just For Laughs
GOJ Get out of Jail
GOJFC Get out of Jail Free Card
GUI Graphical User Interface
AI Artificial Intelligence
API Application Programming Interface
VB Visual Basic

1.4 References

• Pressman, Roger S. Software Engineering: A Practitioner's Approach. 5th ed. Toronto: McGraw-Hill,
2001.

• Cristobal Baray ,"The Model-View-Controller (MVC) Design Pattern."
http://www.cs.indiana.edu/~cbaray/projects/mvc.html (Current October 9, 2003)

• Paula Bo Lu, "COMP 354 Tutorial 2"
http://www.cs.concordia.ca/~grad/blu/comp354-2.ppt (Current October 9, 2003)

• Mark D'Aoust , “Coordinate User Interface Development with VB.NET and the MVC Pattern”,
http://www.devx.com/dotnet/Article/10186/1954?pf=true (Current October 19, 2003)

• Dr. Volker Haarslev, "COMP 472 History and State of the Art in AI"

http://www.cs.concordia.ca/%7Eteaching/comp472/01_intro.pdf (Current October 20, 2003)

1.5 Overview
The remainder of this document is divided into three major parts: Architectural Design description,
Software Interface Design description and Internal Model Design description. The architectural design
consists of the architecture rationale, software architecture diagram and system topology. The software
interface design consists of the system and module interface diagrams and the dynamic models of system
interface, which shows how the module interfaces are to be used. The internal module design describes
each module of the system along with its class diagram and all the classes that it has. The last section
contains the team member's log sheets.

There is an important topic that does not fit in any section of the report template. The topic is the general
description of the flow of the game. The main scenarios of the game and the logical and chronological
relationship among them can be found in this topic. It will give the implementation group a clear idea about
the game itself, rather than the technical rules. We elected to add this as an appendix (see appendix A).

We have also added another section in the Appendices (see Appendix B), which includes some test
scenarios that can be used as guidelines to the testing phase of the project.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 7

2. Architectural Design

2.1 Rationale

The architecture chosen for the Montrealopoly game is the Model View Controller model (MVC). The MVC
architecture is made up of 3 separate components, called the model, view and controller

The model is the core of the game where the games state and player data are stored and manipulated. All of the
computations that are performed during the game are done in this component as well as all data that needs to be
processed. Moreover, any request to change the game’s state is also handled by the model. Whenever there are
changes made to the model, the model updates the view.

The view is the graphical user interface (GUI) of the game and displays the data from the model. Whenever the
model changes, the view responds to those changes by updating itself. The view also gets updated by the controller,
as the controller performs simple data validations on user input and updates the view in the form of a pop-up if any
errors are detected. Different versions of the view can be developed in order to present the same data in different
ways.

The controller is what the players use to interact with the game. All player data is entered via the controller, which it
then passes on to the model. The controller also interprets all mouse clicks or game events and it determines which
part of the model needs to be manipulated. Basic input validations are also performed in the controller, which
updates the view if an error is detected.

The MVC architecture allows the three components to be developed separately from one another and they can be
done in parallel. At anytime, either of the components can be updated without affecting the other components as
long as their application program interface remains the same. With a common API, the 3 models can be seamlessly
integrated into one game and different versions of the models can be used in the game. This architecture allows for
many different versions of views to be developed, which could be used to make variations of the game based on
different themes.

The MVC Architecture

The main reason why Team Redmond chose the MVC model for the Montrealopoly game is that it allows the GUI
to be separated from the core application. This flexibility allows the game’s core to be developed by the
implementation team and the GUI to be designed by the design team. Both teams could then work in parallel and
easily collaborate on any changes that need to be made. By using this architecture, enhancements to the game’s GUI
could be made without having to modify any of the game’s core functionality.

Furthermore, several models could be developed in parallel with each model containing different game
functionalities. Each model could be then thoroughly tested and debugged. Once the quality assurance on the model
has been completed, its functionalities could be integrated into future models.

Model

View

Controller

User

Updates Sees

Uses Manipulates

Updates

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 8

2.2 Software Architecture Diagram

The three components of the MVC model that are used in the Montrealopoly game are shown below in the form of a
high-level class diagram. The players interact directly with the view and the controller, while the model accepts
requests from the controller and updates the view for the players.

View

Controller

Player

Model

Updates Sees

UsesManipulates

Updates

High-level Class Diagram of the MVC Model

The game’s controller accepts input from the player via the mouse and the keyboard through the use of Visual
Basic’s events. Simple validations, like input checking, are done by the controller and will inform the user of any
faulty data entered with a message box. Moreover, if a player tries to perform an illegal action, the controller will
also inform the user via a message box. Any valid action performed by the player will be accepted by the controller,
which will then relay the information to the model.

The model, when instructed by the controller, will perform the task that was requested. All of the game’s data is
stored in the model, which also contains the core functionalities of the game. Whenever there is a change made to
the model’s data, the model will update the view to reflect the change.

The view consists of the GUI, which is the visual aspect of the game. With the GUI, players can monitor the game
flow, see where their opponents are on the board and decide their next course of action. The view also provides
visual cues to let the player know where they can click on the screen and where they can enter data. This input is
handled by the controller, which then gets manipulated by the model and in turn, updates the view.

2.3 System Topology

The Montrealopoly game is to be developed for a standalone environment and each installation of the game is to be
run on a single computer. This will allow for easy distribution of the game, as all three components of the MVC
model will be integrated into one executable. Moreover, the game does not require any third party software to run,
or an Internet connection.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 9

3. Software Interface Design

3.1 System Interface Diagrams
The only system level interface in the Montrealopoly game is the user interface, as the game does not employ any
software or hardware interfaces. The user interface is the game’s GUI, which allows the players to interact with the
game. Through the game’s GUI, the players will be able to see the different states of the game and make decisions
based on what they see.

3.1.1 User Interface
In the Montrealopoly game, the user interfaces are the links between the users and computer. In order to complete a
task with ease, an efficient and intuitive user interface must be developed. In doing so, several points should be
taken into consideration:

• Complete information: player should find all elements they need quickly to make a decision.

• Error avoidance: avoid utilization of ambiguous terms or concepts. If an error occurs, an error message
should display what kind of error has occurred, why it has occurred, and how to solve the error.

• Usability: components should be explicit enough for users in order for them to intuitively know which
actions they have to perform.

The graphical user interfaces (GUI) that the players will interact with are described below.

3.1.1.1 Game Start

Whenever the Montrealopoly game is launched, the Game Start user interface appears. It allows the players to enter
their name, which token they want to use and whether the player will be a computer or a human player.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 10

View 1.1 – Start Board

User interactions

1: User enters a nickname for the player by filling in the Nickname textbox.

2: User chooses what kind of player he wants to assign to the current player by pressing one of the two buttons,
“Human” or “Computer”. The “Human” button is selected by default.

3: User chooses a token by clicking on one of the available tokens. The selected token will then be highlighted.

Note: Steps 1, 2, 3 can be done in any order.

4: When steps 1-3 are completed, the user can click on the “Add Player” button. This action will add the player in
the Players List panel (step 5).

If the user clicks on the button “Add Player” and the steps 1, 2,3 have not been completed, then an error message
box will appear with the reason why this error occurred.

View 1.2 – Error message box: no nickname

View 1.3 – Error message box: no token

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 11

5: When the “Add Player” button is clicked, the player name, along with his token are displayed in the Players List
panel. A “#” symbol next to the players name indicates that the player is a computer player.

6: When at least 2 players have been entered, game play can start. To start the game, the “Let’s Start” button must be
clicked. If less than two players have been entered when the “Let’s Start” button has been clicked, an error message
box will prompt the user for more players.

View 1.4 – Error message box: not enough players

3.1.1.2 Main View

Once enough players have been entered and the “Lets Start” button has been clicked on, the game can
begin. The game’s main interface is loaded, which is the game’s main playing area, which the players
interact with. The components with which the players can interact with are described below.

View 1.2 – Main board

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 12

a. Cells

The board game is composed of 40 cells, with 5 types of different cells. At any time, players can click on a cell
in order to view detailed information about the cell. The different types of cells are described below.

i. Street cell

The board is composed of 22 street cells grouped in 8 colors. Each street cell contains a color, and its name.
When a user clicks on a cell, the title deed of this cell will appear, displaying the current status of this street. The
title deed will be explained in detail in section 3, Pop-up Windows. The street cell also displays who owns the street,
whether or not the street has been mortgaged, the amount of hotels on the street.

View 1.2.1 – User clicks on a cell

User interactions

1: User clicks on a cell. This action provides the user information about the street cell that was clicked.

2: Title deed card corresponding to the cell appears.

3: The player clicks on the “OK” button when finished viewing the title deed card.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 13

Special street cell cases

• Several players on the same cell: at times, there can be several players on the same cell, making it difficult
to see who is on the cell. To resolve this problem, the token of the current player is displayed and the rest of
the tokens are represented by little colored squares.

View 1.2.2 – Several users on the same cell

1: The token of the current player on the cell is displayed.

2: The colored squares represent the other users on the same cell.

View 1.2.3 – A token and its associated colored square

• Cell owned by a player: when a player is the owner of a street cell, his token is displayed on the top-left
corner of the cell.

View 1.2.4 – Saint-Jacques street is owned by the player with the Canadian leaf token

• Hotels built on a street: little rectangles represent hotels and they are displayed in the top-right corner of a
street cell.

View 1.2.5 – Saint-Jacques street has 3 hotels build on it

• Cell mortgaged: when a property is mortgaged, a mortgage icon is displayed on the top-right corner of the
cell.

View 1.2.6 – Saint-Jacques street with mortgage icon

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 14

ii. Metro/Utility cell

The board contains 4 metro cells and 2 utility cells, which can be purchased like street cells. These cells are
similar to the street cells, except that no hotels can be built on them. Clicking on a metro/utility cell will
bring up the cell’s title deed.

View 1.2.7 – A metro cell: Guy-Concordia

View 1.2.8 – An utility cell: snow dump

View 1.2.10 – An utility cell: Hydro Quebec

Metros/utilities cells behave in similar ways to the street cells.

• if a token is displayed in the top-left corner of the cell, then this cell is owned

• if a mortgage icon is displayed, then the cell is mortgaged

iii. Corner cell

The board contains 4 corner cells, which no player can own. The Go cell adds $200 to the player’s account
each time they land on or pass this cell. The Olympic Parc and Bordeaux Jail cells are resting cells where
nothing happens when the player lands on them. The Go To Jail cell sends the player directly to jail.
Clicking on the cell will display information about the cell. The Bordeaux Jail cell will display who
currently is in jail and who is just visiting, when clicked on.

View 1.2.11 – Go Cell (bottom-
right corner)

View 1.2.12 –Bordeaux Jail Cell
(bottom-left corner)

View 1.2.13 – Olympic Park Cell
(top-left corner)

View 1.2.14 – Go to jail Cell
(top-right corner)

iv. JFL Cell (Just For Laughs Cell)

The board contains 6 JFL cells. When a user lands on a JFL cell, a JFL Card will be automatically
displayed via a pop-up window. The user will then have to do as instructed as per the JFL card.

View 1.2.15 – JFL Cell

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 15

v. Tax Cell

There are 2 tax cells on the board, a Luxury Tax and Income Tax.

Clicking on one of theses cells will display the tax that they must pay to the bank.

View 1.2.16 – Income Tax cell

View 1.2.17 – Luxury Tax cell

b. Buttons and inventory area of the board game

Most of the actions during a game will be performed in this area. It is the central point of the game as users will
be able to perform several actions in this area (such as paying a fine if they are in jail, etc). The buttons area of the
board game is located in the top-left corner of the application.

View 1.2.17 – Buttons area placement

 Depending on the state of the game, different buttons will appear here.

i. Roll dice button

At the beginning of each turn, the player will have the option to roll the dice by clicking on the “Roll Dice”
button. The player token will then be automatically moved the amount of steps the player rolled. Then the button is
disabled except if the player has rolled double, then the button is still enabled and the player can roll the dice a
second.

ii. Next Turn button

Once the player is finished his turn, he will be able to pass the play onto the next player by clicking on this
button. This button will be disabled if the player is in debt to another player and will only be enabled once the debt
has been paid.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 16

View 1.2.18 – Roll Dice button

View 1.2.19 – Next Turn button

iii. Pay Fine button

This button allows a player to pay the fine to get out of jail and will appear only when a player is in jail.
After being in jail for three turns, the “Roll Dice” button will be disabled and the player will have only 2 solutions to
get out of jail by clicking on “Pay Fine” or “Use Get out of Jail Card” (if he has the card).

iv. “Use Get out of Jail Card” button

If a player is in jail and has previously picked up a “Get out of Jail Card” from the JFL deck (and has yet to
use it), then this button will appear on the buttons area. This button will allow the player to get out of jail for free.
Once the card is used, the card will be returned to the JFL deck. This button will appear if the player is in jail and
has the “Get out of Jail” card.

v. Inventory area

When a player has a “Get out of jail card”, an icon will be displayed, reminding the player that he has a “Get
out of Jail” Card. The icon is for display purposes only, and no actions can be performed by clicking on the icon.

View1.2.20 – Button / Inventory Area

 User interactions

 When a user is in jail, he will have these different possibilities to get out of jail.

1: If the user has not spent more than 3 turns in jail, he can roll dice and get out of jail if doubles were rolled.

2: The user can pay the fine to get out of jail.

3: If the user has a “Get Out Of Jail Card” he can then click on the “Use Get Out Of Jail Card” button, if he has one.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 17

vi. Declare bankruptcy

When a user does not have enough money in bank to continue playing the game, then the “Declare Bankruptcy”
button appears. Pressing this button will terminate the game for the current player.

c. Dice area

This is the place where users see what they have rolled and is for display purposes only.

View 1.2.21 – Dice area

d. Side bar

The sidebar displays the players in the game, the current player and a message area.

View 1.2.22 – Side Bar

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 18

Components of the side bar

1. Player List

All the players currently in the game are displayed here along with their token. A computer player will have
a ‘#’ symbol in front of their name. A player who has declared bankruptcy will have their name striked-out.

2. Message area

The message area will prompt the current player with the current state of the game. The message area
display the amount that he rolled, prompt the player that he is in debt, etc.

3. Current player

The current player along with their token will be displayed here.

3.1.1.3 Pop-Up Windows

a. Title deed card
Clicking on a street/metro/utility cell will produce a pop-up with the property’s title deed card. Depending
on the status of the game and who clicked on the title deed, different buttons will appear on it. All title
deeds have the following basic look:

View 1.3.1 – A title deed card

1: this area shows the name of the street, its price and its status (vacant or owned by)
2: this area displays the different costs: the rent, with or without hotels, the mortgage value and the price to

build a hotel
3: this area shows several buttons, depending on the status of street and the player who clicked on the title

deed.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 19

View 1.3.2 – Title deed info

At any time during the player’s turn, the player may
view a Title Deed Card by clicking on its corresponding
cell. The information pertaining to the property will
appear and a click on the “OK” button will close the
title deed.
If the player clicks on the “Trade” button, then a “Trade
Card” will appear (see topic b – Trading Card for
further details).

View 1.3.3 – Title deed vacant lot

Landing on a vacant property will produce a Title Deed
Card with two buttons that displaying two options. One
button will say “I want it!” and by clicking on it will
allow the player to purchase the property. The other
button will say “Forget it!” and the player can choose
not to purchase the property.

View 1.3.4 – Title deed when you owns this street

Once the player is the owner of a property and clicks on
the corresponding cell, the action buttons displayed will
allow the player to mortgage / unmortgage / buy / sell

View 1.3.5 – Title deed when a street is mortgaged

If a property is mortgaged, the Title Deed Card will
have action buttons to “Unmortgage” the property and
the “OK” button to close the Title Deed Card.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 20

hotels. The details of the buttons are as follows:
2: “Mortgage”: mortgage the property and will appear if
the property is unimproved.
2: “Unmortgage”: pay back the mortgage to the bank.
3: “+Hotel”: to build a hotel and appears only if there
are sufficient funds.
3: “-Hotel”: to sell a hotel back to the bank.
“OK” to close the Title Deed Card
1: (*)Number of hotels built on the street

b. Trading card

If a player wants to purchase a property from another player, he must click on the property that he wants,
then click on the trade button. The trading card appears; it shows information about the trade (1), a text box to enter
the amount that the player wants to pay for it (2). By clicking on the “I Want It!” button will initiate the negotiations
for the property and clicking on “Forget It!” cancels the offer (3).

View 1.3.6 – Trading card interface

The owner of the property receives a pop-up with the proposal (1), after which the owner has several
options. If the owner is interested in the trade he clicks on the “Let’s Deal Together” button (2). On the
other hand, if the owner wants more money, he enters the amount desired in the “How much” box (3) and
then clicks on the “I Want More Money…” button (4), which is a counter-offer. The offer can also be
rejected by clicking on the “Forget about it!” button (4).

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 21

View 1.3.7 – Trading card interface when replying

If a counter-offer is made the buyer will receive a pop-up displaying the counter-offer proposal (1) and the
price asked (2). The buyer then can accept or reject the offer (3).

View 1.3.8 – Trading card interface when counter-offering

If a proposal is accepted by the owner of a street, the street changes owner and a message is displayed in

the message area (see view 1.2.22). If the trade proposal has been rejected, then another message is displayed in the
message area (see view 1.2.22). If the players enter invalid amounts of money, an error message will prompt the user
to enter a valid amount.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 22

View 1.3.9 – Error message box: not a valid amount of money

c. Metro / Utility card

Like streets, Metro and Utility cells have properties like rent and mortgage. When a user lands on a Metro

or Utility cell for the first time, he has the possibility to buy it. Otherwise, when a user clicks on a metro or utility
cell, a card will appear and show information about the cell. An example is shown with the Hydro-Quebec utility
below.

View 1.3.10-13

When a user lands on the
Hydro-Québec cell and
this cell is vacant, this card
appears when the cell is
clicked on and the player
has the possibility to buy
this property by clicking
the “I buy it” button.
If user clicks on the
“Forget it” button, then the
property is still vacant.

When an owner clicks on
their own utility, they have
the option to mortgage it or
simply view the
information about the
utility.

If the Hydro-Québec utility
has been mortgaged, the
owner can unmortgage the
property if they have
enough funds to do so by
clicking on the
“Unmortgage” button
when they click on their
own cell.

If a player clicks on a cell
that is owned by another
player, they will have to
opportunity to initiate a
trade for the property by
clicking on the “Trade”
button.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 23

View 1.3.14-17

The metros have the
same characteristics as
the Hydro-Québec card.

View 1.3.18-21

Same as the Hydro-Québec
card.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 24

d. JFL Card

Once a player lands on a JFL cell, a JFL Card will pop-up. A JFL Card will give the player instructions that
the player must follow. When the player clicks on the “OK Dude” button, the action based on the instructions will
be performed. However, if the card is a “Get Out of Jail” Card, the player gets to keep the card for future use (in that
case a special icon will be placed in the inventory area – see view 1.2.20). The only action required from the user is
a click on the “OK Dude” button.

View 1.3.22 – Just For Laughs Card

e. Other pop-ups

The other pop-ups of the game (Jail, Olympic, Go To Jail, Luxury Tax and Income Tax cells), like the JFL

Cards, are only be for information purposes. When a player clicks on one of these cells (see view 1.2 Main Board to
see where they are located), a Pop-Up window will appear, displaying information about the cell. User won’t have
any interaction with these cards except for the “Ok” button to close them.

View 1.3.23 – Luxury Tax example.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 25

3.1.1.4 Winner interface

When there is only one player left in the game, that player is declared the winner. A pop-up will display the
name of the winning player. The winner will then have two options, either to start a new game or to exit the game.

View 1.4.1 – Winner interface

User interactions

1: No interaction needed. The nickname and the token of the winner is displayed on the front page of the newspaper.
2: If a player wants to play a new game, he can do so by pressing the “Start a new game” button.
3: If a player wants to exit the game, they can do so by clicking “Exit game”.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 26

3.1.1.5 Menu interface

View 1.5.1 – Menu bar

User interactions

By clicking on “File”, a sub-menu appears and the player can start a new game by clicking “New game” or
can exit the game by clicking on “Exit”.

If the users want to have more information about the team which developed this game, they can click on
“About us”. A pop-up will provide information about game’s developers.

3.1.2 Software Interface
This is not applicable as the Montrealopoly game does not interact with any system software, besides the OS. The
Montrealopoly game is designed as a stand-alone system; therefore, there is no interaction (and thereby no interface)
between the Montrealopoly system and any other software system.

3.1.3 Hardware Interface
This is not applicable, as the Montrealopoly game does not interact with any specific hardware (other than the
hardware of the computer running the software). Therefore, as part of our design, there is no interactions (and
thereby no interface) between the Montrealopoly system and any other hardware system.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 27

3.2 Module Interface Diagrams

In the MVC model, there are interfaces between the Model, View and Controller. The methods in one module are
accessed by another module via an interface between the two modules, as seen in interfaces 3.2.1 - 3.2.3.

The three interfaces between the MVC model modules.

3.2.1 View Interface
The interface between the model and view is called by the model whenever there is a change in its internal data
structures.. The following methods are part of the interface:

3.2.1.1 GameStart
The gameStart class is called whenever a new game is launched.

The following method is available to this interface:

• ShowGameStartWindow(): The game start panel is launched at the start of a new game and is used to
gather information about the players in the game.

3.2.1.2 MainWindow
The MainWindow class is the main playing area of the game. It consists of the board image, all the cells on the
board, the current position of the player’s tokens, and the list of players in the game.

The following methods are available to this interface:

• showStreetCell(): This cell gets refreshed whenever the state of the cell changes. The cell displays its
owner, the current player’s token, colored cells representing the other players on the cell, the number of
hotels and whether the street is mortgaged.

• showMetroCell(): This cell gets refreshed whenever the state of the cell changes. The cell displays its
owner, the current player’s token, colored cells representing the other players on the cell, and whether the
metro is mortgaged.

• showUtilityCell(): This cell gets refreshed whenever the state of the cell changes. The cell displays its
owner, the current player’s token, colored cells representing the other players on the cell, and whether the
utility is mortgaged.

• showInfoMessage(): All messages regarding the games state are displayed in the message window on the
board .

• showErrorMessage(): Input errors detected by the controller are displayed with this method.

The following methods all act in a similar manner whenever the state of the cell changes. The cell displays the
current player’s token and colored boxes representing the other players on the cell.

Model View

Controller

Interface 3.2.1

Interface 3.2.2 Interface 3.2.3

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 28

• showGoCell()
• showGoToJailCell()
• showOlympicParkCell()
• showJailCell()
• showIncomeTaxCell()
• showLuxuryCell()
• showJFLCell()

3.2.1.3 JFL CardWindow
Whenever a player lands on a JFL cell, a pop-up with a JFL card appears.

The following method is available to this interface:

• ShowJFLCard(): The JFL pop-up displays a JFL card with the instructions that the player must follow.

3.2.1.4 TradeWindow
Whenever a player wants to initiate a trade, this window pops-up to perform the trade.

The following method is available to this interface:

• ShowTradeWindow(): The pop-up window prompts the user for the amount of money that the player
wants to pay for the property. The owner of the property then receives a pop-up where he can then accept
the offer, refuse it or ask for more money. The initiator of the trade will then get a pop-up with the result of
the offer, which he can accept or decline.

3.2.1.5 CellInfoWindow
Whenever a player clicks on a cell, a pop-up displays the information about the particular cell.

The following method is available to this interface:

• showCellInfo(): Displays the information about the Jail, Olympic park, Go To Jail, go, JFL, Income Tax
and Luxury Tax cells when clicked on.

• showStreetInfo(): Displays the owner of the street, the rent, mortgage value, cost of the hotels and buttons
area.

• showMetroInfo(): Displays the owner of the metro, the rent, mortgage value and buttons area.
• showUtilityInfo():Displays the owner of the utility, the rent, mortgage value and buttons area.

3.2.1.6 GameEnd
The gameEnd class is called whenever there is only one player left in the game, which is also the games winner.

The following method is available to this interface:

• ShowWinner(): The winner of the game is displayed along with the option to start and new game or exit the
application.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 29

3.2.2 Model Interface
The interface between the controller and model is called whenever the controller receives input from the player. The
following methods are part of the interface:

3.2.2.1 Player
The player class contains all the data of each player in the game. The methods called in this class by the interface are
to query the player’s status or to perform an action that the player requested.

The following methods are available to this interface:

• IsBankrupt(): Called whenever the next turn button is clicked on to determine if the next player is still in
the game.

• declareBankrupcy(): A player declares bankruptcy when he cannot raise enough funds to pay all his debts
to another player. Declaring bankruptcy removes the player from the game and any assets are transferred to
the player he is in debt to.

• buyProperty(): If the property the player lands on is vacant, the player can purchase the property by
clicking on the buy button on the title deed card.

• offerTrade(): If a player is interested in acquiring a property from another player, he may initiate trade
negotiations by clicking on the trade button.

• pay50GOJ(): If a player is in jail and wants to get out of jail by paying the $50 fine, he may do so by
clicking on the pay fine button.

• useGOJFC(): If a player is in jail and has a get out of jail for free card, he may use it by clicking on the get
out of jail for free card.

3.2.2.2 Board
The board class contains the methods which control the flow of the game. Methods are called whenever a new game
is started and when control of the game needs to be passed on to the next player to start his turn.

The following methods are available to this interface:
addPlayer(): Whenever the add player button is clicked on, the player is entered into the game.
shufflePlayers(): When all the players have been entered into the game, all the players are randomly shuffled inorder
to set the order of play.
playTurn(): Rolls the dice and gets value of the dice rolled.
rollDice(): At the start of a player’s turn, he may roll the dice to advance on the board by clicking on the roll dice
button.
endTurn(): When a player has completed his turn, play is passed on to the next player by clicking on the next turn
button.
getCurrentPlayer(): Gets the player object in order to call other methods on the object.
getUtility(): Gets the utility object in order to call other methods on the object.
getStreet(): Gets the street object in order to call other methods on the object.
getMetro(): Gets the metro object in order to call other methods on the object.

3.2.2.3 Property
Methods from the property class are called whenever a player clicks on a street, metro or utility cell on the board.

The following methods are available to this interface:
getOwners(): Gets the owner of the property.
mortgage(): Mortgages the property if the owner clicks on the mortgage button.
unmortgage(): Unmortgages the property if the owner clicks on the unmortgage button and has sufficient funds.

3.2.2.4 Jail
The jail class contains a method to show information about the cell when clicked on.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 30

The following method is available to this interface:
showInfo(): Displays a pop-up with information with which players are in jail and which players are just visiting.

3.2.2.5 Utility
The utility class contains a method to show information about the cell when clicked on.

The following method is available to this interface:
showInfo(): Displays a pop-up with information about the utility and along with who owns it.

3.2.2.6 Street
The street class contains methods that allows the player to build and sell hotels and displays information about the
street when the cell is clicked on.

The following methods are available to this interface:
buildHotel(): Builds a hotel on the property whenever the build hotel button is clicked on. The player must have
sufficient funds and own the whole district to do so.
sellHotel(): Sells the hotels back to the bank at half the purchase price.
showinfo(): Displays a pop-up with information about the street and along with who owns it.

3.2.2.7 Metro
The metro class contains a method to show information about the cell when clicked on.

The following method is available to this interface:
showInfo(): Displays a pop-up with information about the metro and along with who owns it.

3.2.3 Controller Interface
The controller accepts input from the player and performs simple validations on it. Through the use of Visual
Basic’s event handler, any errors that are detected update the view by calling the showErrorMessage method in the
view. This method informs the player of the error by displaying a pop-up.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 31

3.3 Dynamic Models of System Interface

In order to better portray the interactions between the system modules, we have chosen some scenarios, or major
functionalities of the system and will explain and depict them using sequence diagrams. We have elected to use
sequence diagrams because they depict the interaction between the classes (or objects) of the system and also show
the sequence of calls (or messages) that occur.

3.3.1 Start Game Scenario

 : Player
 : GameStartEventHandler mainB oard :

Board
 : Dice : Cell : Player : M ainWindow : JFLDeck

1: Startgame_Click()

2: initialize() For simplicity, the Cell class was
used here. However, in reality,
we m ust create objects for each
type of Cell (ie: Street, Metro,
Jail, JFL, etc. ..)

3: create()

4: create()

5: create()

6: create()

7: create()

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 32

3.3.2 Roll Dice Scenario

The following scenario depicts the actions that occur when a user clicks on the Roll Dice button. First, the event
handler (in the Controller) is called upon to handle the click event. Next, the controller calls the rollDice() in the
Board class (in the Model). The Model then processes the dice roll and updates itself. Finally, the player’s token has
to be moved, so a message is passed to the MainWindow form (in the View) to move the token. This is a typical
example of the interaction between the three modules of the system.

 : Player
 : MainWindowEventHandler mainBoard :

Board
dice1 : Dice dice2 : Dice currPlayer :

Player
frmMainWindow :

MainWindow

1: RollDice_Click()

2: rollDice()

3: roll()

5: roll()

6: getValue()

8: move(numSteps = sum of dice values)

4: getValue()

7: getCurrPlayer()

9: moveToken(tokenNum, stepsToMove)

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 33

3.3.3 Buy Property Scenario

Similarly, one can easily describe the sequence of actions that occur when the player buys a property. First, the user
clicks on the BuyIt button. This event is handled by the Controller. The event handler then calls the getCurrPlayer()
method in class Board (in Model) to retrieve the current Player object. Then, it will call the buyProperty() method on
this object. From this point on, the Model takes over, updating its data structures to keep track of the new property
owner. Finally, the model will send a message to the View, to update it’s cell display on the board, to identify the
new owner.

 : Player
 : CellInfoEventHandler mainBoard :

Board
currPlayer :

Player
theStreet :

Street
frmM ainWindow :

MainWindow

1: buyButton_Click()

2: getCurrPlayer()

3: buyProperty()

4: getPrice()

5: setOwner(Player)

6: showStreetCell()

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 34

3.3.4 Build Hotel Scenario

In this scenario, the player builds a hotel on a property he owns by first accessing the CellInfoWindow and then
clicking on the Build Hotel button. This event is handled by the Controller, which first calls the getStreet() method
in the Board class to get the street object and then calls the buildHotel() method on that Street object. From this
point, the Model takes over, and updates its internal data structures. Finally, the model then updates the View, by
calling the method showStreetCell(), which will update the cell display on the board, with the new number of hotels.

Similarly, the Sell Hotel scenario can be depicted using approximately the same sequence diagram as shown below.

 : Player
 : CellInfoEventHandler mainBoard :

Board
theStreet :

Street
owner : Player frmMainWindow :

MainWindow

1: buildHotelButton_Click...

7: showStreetCell()

2: getStreet()

5: getHotelCost()

4: getOwner()

6: debit(hotelCost)

3: buildHotel()

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 35

3.3.5 Declare Bankruptcy Scenario

When a user decides to declare bankruptcy, the following sequence of actions occur. First, the player clicks on the
declareBankruptcy button. This event is handled by the controller. The event handler first calls the getCurrPlayer()
method on the Board class (in the Model) to get the current Player object. Then, it will call the declareBankruptcy()
method on that Player object. From this point, the Model takes over, updating it’s internal data structures
accordingly. This includes finding out which player the current player is in debt to, and transferring the assets and
balance to that player. Finally, it will update the view on the MainWindowView, by updating the cell displays on the
board (since the owners may have changed).

 : Player
 : MainWindowEventHandler mainBoard :

Board
currPlayer :

Player
theStreet :

Street
frmMainWindow :

MainWindow
playerInDebtTo

: Player

1: declareBankruptcy_Click()

2: getCurrPlayer()

3: dec lareBankruptc y()

4: isInDebtTo()

5: getOwner()

6: setOwner(playerInDebtTo)

8: credit(bankruptPlayerBalance)

7: getBalance()

9: showStreetCell()

10: endTurn()

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 36

4. Internal Module Design

As explained before, the system is divided into three modules, the Model, the View and the Controller. The modules
interact together using their respective interfaces, which have been described in detail in section 3.2. Now, we turn
our attention to each module, separately. In this section, we will describe the detailed design of the three modules.
First, a textual description of the classes will be given. This will be followed by a class diagram, which will describe
the relationships between the classes. Subsequently, a detailed description of each class, its methods and attributes
will be given. Finally, an important feature, Artificial Intelligence, will be discussed separately in a sub-section.

Before proceeding with the detailed internal module design, it is important to identify and discuss some issues relate
to this design. Visual Basic (VB) is the software development tool of choice for our project. This programming
language was chosen because it is remarkably easy to develop a graphical user interface (GUI) quickly and
efficiently. This will allow us to better deal with the strict time restrictions that this project must meet.

As the design was in progress, an important question was raised concerning VB and inheritance. In our design, we
rely on inheritance to solve certain problems like the different types of cells. It is important to note that we tested
Visual Basic, and determined that it does support inheritance. We also tested several scenarios with regards to this
design and were able to properly implement them using Visual Basic. This was a clear indication that the design was
going in the right direction.

It is also quite interesting to note that the CASE tool of choice for this project, Rational Rose, supports VB
integration. Rational Rose allows you to use VB-specific data types in a class diagram, and even generate source
code for those classes. After the initial design, we were able to fine-tune the Rose software to make it generate VB
code. This source code can then be modified by our implementation team; at that point we can, at the click of a
button, update the Rose model from the modified source code. This will be greatly helpful in accelerating the
implementation phase.

4.1 Module <Model>
The most important module in the Montrealopoly game design is the model module. This module is used to
represent the state and actions that occur in the game. This includes player states, cell information and the
actions that must occur in the game.

The model consists of several classes, which are all contained within a container calls called Board. The
Board class is composed of 1-8 Player objects, 40 Cell objects, 2 dice objects and a JFLDeck object. The
JFLDeck object, in turn, is composed of 20 JFLCard objects. Each class contains the attributes and methods
necessary to meet its requirements.

The following sections will describe the classes, their relationships and will provide a detailed description
of each method listed below.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 37

4.1.1 Module Class Diagram

JFL

doAction()
display()

<<Class Module>>
Metro

getRent()
doAction()
display()
showinfo()

<<Class Module>>
St reet

int hotel

getRent()
getRentWithHotels()
getHotelCost()
getHotelCount()
buildHotel()
sellHotel()
doAction()
display()
showinfo()

<<Class Module>>
Utility

getRent()
doAction()
display()
showinfo()

<<Class Module>>
GoToJail

display()
doAction()

<<Class Module>>
OlympicPark

displ ay ()

<<Class Module>>
IncomeTax

doActi on()
di splay ()

<<Class Module>>
Lu xu ryTa x

doAction()
display()

<<Class Module>>

Pro perty

price : Integer
isOwnedBy : Integer
isMortgaged : Boolean

isOwned()
getOwner()
setOwner()
isMortgaged()
getPrice()
getRent()
getMortgage()
mortgage()
unmortgage()

<<Class Module>>

Jail

display()
showinfo()

<<Class Module>>
Go

display()

<< Cl ass M odu le>>

Player

name : String
Id : Integer
color : ColorConstants
tokenName : String
balance : Integer
position : Integer
inDebtTo : InDebtToType
inJail : Boolean
inJailCount : Integer
hasGOJFC : Boolean
isComputer : Boolean
isBankrupt : Boolean
doubleCount : Integer

getName()
getId()
getColor()
getTokenName()
getBalance()
getPosition()
IsInJail()
getJailCount()
incJailCount()
resetJailCount()
isBankrupt()
declareBankruptcy()
ownsSomething()
move()
debit()
credit()
autoPlay()
autoMakeMoney()
buyProperty()
offerTrade()
commitTrade()
isInDebtTo()
setInDebtTo()
hasGoJFC()
goToJail()
getOutOfJail()
getDoubleCount()
incDoubleCount()
resetDobleCount()
pay50GOJ()
useGOJFC()
isComputer()
calcAssets()

<<Class Module>>

Cell

name : Strin g
id : Intege r

get Id()
getNa m e()
isO n()
display()
sho wi nfo()
doAction()

<<Class Module>>

Dice

diceValue : Integer

rol l ()
getValue()

<<Class Module>>

Board

currPlayer : Integer
numPlayers : Integer
players[8] : Player
goCell : Go
goToJailCell : GoToJail
jailCell : Jail
olympicParkCell : OlympicPark
incomeTaxCell : IncomeTax
luxuryTaxCell : LuxuryTax
JFLCells[6] : JFL
streetCells[22] : Street
util ityCells[2] : Utility
metroCells[4] : Metro
deck : JFLDeck
dice1 : Dice
dice2 : Dice

addPlayer()
shufflePlayers()
playTurn()
rollDice()
endTurn()
getStreet()
getMetro()
getUtility()
getDice()
getJFLDeck()
getPlayer()
getCurrPlayer()

<<Class Module>>

2..8

1

2..8

1

40

1

40

1

2

1

2

1

JFLCard

type : Integer
description : String

doAction()
display()
getDescription()
getType()

<<Class Module>>

JFLDeck

de ck[20] : JFLCard

shuffle()
ge tCard()
insertCard()

<<Class Module>>

1
1

1
1

20

1

20

1

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 38

4.1.2 Class <Board>

Class Name Board
Inherits from None
Description The biggest container of the game. All object in a game will be in the board.

Visibility Data type Name Description
Private Player currPlayer Current player id
Private Integer numPlayers Total number of the players, from 2 to 8
Private Player players[8] Array of player objects
Private Go goCell Object representing the Go cell
Private GoToJail GoToJailCell Object representing the GoToJail cell
Private Jail JailCell Object representing the Jail cell
Private OlympicPark OlympicParkCell Object representing the OlympicPark cell
Private IncomeTax IncomeTaxCell Object representing the IncomeTax cell
Private LuxuryTax LuxuryTaxCell Object representing the LuxuryTax cell
Private JFL JFLCells[6] Objects representing the JFL cells
Private Street StreetCells[22] Objects representing the street cells
Private Utility UtilityCells[2] Objects representing the utility cells
Private Metro MetroCells[4] Objects representing the metro cells
Private JFLDeck Deck The JFLDeck object
Private Dice dice1 The first dice

Attributes

Private Dice dice2 The second dice
Visibility Method Name Description
Public Board() Constructor.
Public endTrun() Transfer the control to the next

player.
Public shufflePlayers() To make the players turns randomly.
Public addPlayer (Player player) Add a player to the game.
Public rollDice() Roll two dices; get the two numbers,

get the steps to move; set the
doubleCount of a player if it is
double.

Public Street getStreet(Integer streetNo) Return a street object no:1—22
Public Utility getUtility(Integer utilitytNo) Return a utility object no:1—2
Public Metro getMetro(Integer metroNo) Return a metro object no:1—4
Public Dice getDice(Integer diceNo) Return a Dice object No: 1-2
Public JFLDeck getJFLDeck() Return a JFLDeck object
Public Player getPlayer(Integer playerNo) Return a player object playerNo:from

1to numPlayer

Methods

Public Player getCurrPlayer() Return the current player object

4.1.2.1 Method Descriptions

Method name EndTurn()
Class Name Board
Functionality Transfer the control to the next player.
Input None
Output None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 39

Pseudo Code Begin
 currPlayer = (currPlayer +1) Mod numPlayers
End

Method name shufflePlayers()
Class Name Board
Functionality Randomize the order of the players. Call this after adding all players
Input None
Output None
Pseudo Code Begin

Provide a random seed to the random number generator
Generate 8 unique random numbers from 0 to 7
Re-order the array of players using sequence generated in previous step

End

Method name addPlayer(Player player)
Class Name Board
Functionality Add a player to the board
Input A player
Output None
Pseudo Code Begin

numPlayers = numPlayers + 1
players[numPlayers] = Player(player) // Construct a new Player object

End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 40

Method name rollDice()
Class Name Board
Functionality Roll the two Dices
Input None
Output None
Pseudo Code Begin

 dice1.roll()
 dice2.roll()
 If dice1.getValue() = dice2.getValue()
 currPlayer.incDoubleCount()
 Else
 currPlayer.resetDoubleCount()
 If currPlayer.getDoubleCount() = 3
 currPlayer.goToJail()
 Else
 currPlayer.move(dice1.getValue() + dice2.getValue())
End

Method name Street getStreet(Integer streetNo)
Class Name Board
Functionality Return a street object no:1—22
Input None
Output Street object
Pseudo Code Begin

 Return street[streetNo]
End

Method name Utility getUtility(Integer utilitytNo)
Class Name Board
Functionality Return a utility object no:1—2
Input None
Output Utility object
Pseudo Code Begin

 Return utility[utilityNo]
End

Method name Metro getMetro(Integer metroNo)
Class Name Board
Functionality Return a metro object no:1—4
Input None
Output Metro object
Pseudo Code Begin

 Return metro[utilityNo]
End

Method name Dice getDice(Integer diceNo)
Class Name Board
Functionality Return a metro object no:1—2
Input None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 41

Output Dice object
Pseudo Code Begin

 If (diceNo==2) Return dice2
 Return dice1
End

Method name JFLDeck getJFLDeck()
Class Name Board
Functionality Return a JFLDeck object
Input None
Output JFLDeck object
Pseudo Code Begin

 Return Deck
End

Method name Player getPlayer(Integer playerNo)
Class Name Board
Functionality Return a players object
Input None
Output Player objects
Pseudo Code Begin

 Return player[playerNo]
End

Method name Player getCurrPlayer()
Class Name Board
Functionality Return the current players objects
Input None
Output Player objects
Pseudo Code Begin

 Return currPlayer
End

4.1.3 Class <Player>

Class Name Player
Inherits from None
Description The actor of this game. It may be a cyber player or human. It has all the attributes and actions to

make game goes well.
Visibility Data

type
Name Description

Private String name The name of the player
Private Integer id id of the player.
Private Color color The color associated with the player.
Private String TokenName File name if the token image
Private Integer Balance The balance (amount of money) the player has

Attributes

Private Integer Position The number of the cell he is on

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 42

Private Integer InDebtTo This is indicated by the inDebtTo field which can be,
0: Not in Debt;
1 to 8 - In debt to the specified player ID;
9: In debt to Bank

Private Boolean inJail In jail: true; otherwise: false
Private Integer inJailCount Number of turns the player has been in jail
Private Boolean iscomputer If the player is a human player, this is false; true otherwise
Private Boolean HasGoJFC If the player has a GOJFC, this is true; false otherwise
Private Boolean isBankrupt True if the player is bankrupted.

Private Integer doubleCount Number of times a player has rolled doubles
Visibility Method Name Description
Public Player() The constructor
Public getName() To get the name of the player
Public Integer getID() To get the ID of the player
Public Integer getColor() To get the color of the player
Public String getTokenName() To get the name of the player’s token
Public Integer getBalance() To get the player’s balance
Public Integer getPosition() To get the current position of the player
Public Boolean isInJail() To see if the player is in jail: true: in jail
Public Integer getJailCouunt() To see how many turns the player is in the jail.
Public incJailCount() To increase the jailCount by one.
Public resetJailCount() To reset the jailCount to zero
Public Boolean isBankRupt() To see if the player is bankrupted: true: yes
Public declareBankruptcy() The player declares bankruptcy.
Public Boolean ownsSomething() To see if the player owns at least a property.
Public move(Integer moveStep) The token moves cell by cell for moveStep steps, if

pass GO, then collect $200!
Public debit(Integer amount) Pay the specified amount
Public credit(Integer amount) Collect the specified amount
Public autoMakeMoney() Called if Computer player is in debt, to make money.
Public autoPlay() This is the AI for a computer player.
Public buyProperty

(Property theProperty)
To buy an unowned property.

Public offerTrade
(Property theProperty,
Integer amount)

Makes an offer (proposal) to buy another player’s
property.

Public commitTrade(Property
theProperty, Integer
amount)

Changes ownership of properties and transfers the
amounts of the trade. This actually commits the trade.

Public Integer isInDebtTo() The function getInDebtTo() just returns the inDebtTo
attribute

Public setInDebtTo(Integer p) P=0 no debit, 1-8 with player 1-9; 9:with bank
Public Boolean hasGoJFC() True if has a go out of jail free card.
Public gotoJail() Move the token directly, in a straight line, to the jail

cell .
Public getOutOfJail() A player is freed from the jail.
Public Integer getDoubleCount() How many double has the player rolled?
Public incDoubleCount() Increase the doubleCount by one.
Public resetDoubleCount() Set the doubleCount to zero.
Public Pay50GOJ() To pay $50 to get out of jail.

Methods

Public useGOJFC(JFLDeck deck) Use Go Out Of Jail Free card to get out jail

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 43

 Public Boolean isComputer() True if a player is a cyber.

4.1.3.1 Method Descriptions

Method name String getName()
Class Name Player
Functionality Get player’s name
Input None
Output Player’s name
Pseudo Code Begin

 Return name
End

Method name Integer getID()
Class Name Player
Functionality Get player’s ID
Input None
Output Player’s ID
Pseudo Code Begin

 Return ID
End

Method name Integer getColor()
Class Name Player
Functionality Get player’s color
Input None
Output Player’s color
Pseudo Code Begin

 Return color
End

Method name String getTokenName()
Class Name Player
Functionality Get player’s TokenName
Input None
Output Player’s TokenName
Pseudo Code Begin

 Return tokenName
End

Method name Integer getBalance()
Class Name Player
Functionality Get player’s balance
Input None
Output Player’s name
Pseudo Code Begin

 Return balance
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 44

Method name Integer getPosition()
Class Name Player
Functionality Get player’s current position (the number of cell i.e., cellID)
Input None
Output Player’s position
Pseudo Code Begin

 Return position
End

Method name Boolean isInjail()
Class Name Player
Functionality Get player’s current inJail (true if in the jail)
Input None
Output Player’s inJail
Pseudo Code Begin

 Return inJail
End

Method name Integer getJailCount()
Class Name Player
Functionality Get player’s current jail count (how many turns has the player been in the jail)
Input None
Output Player’s position
Pseudo Code Begin

 Return jailCouunt
End

Method name incJailCount()
Class Name Player
Functionality Increase the jailCount by one
Input None
Output None
Pseudo Code Begin

 jailCount = jailCount + 1
End

Method name resetJailCount()
Class Name Player
Functionality Reset the jailCount to zero
Input None
Output None
Pseudo Code Begin

 JailCount=0
End

Method name Boolean isBankrupt()
Class Name Player
Functionality Get player’s isBankrupt value (true if he is bankrupted and will not play.)

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 45

Input None
Output Player’s bankrupt status
Pseudo Code Begin

 Return isBankrupt
End

Method name declareBankruptcy()
Class Name Player
Functionality Set player’s isBankrupt value (true if he is bankrupted and will not play.)
Input None
Output None
Pseudo Code Begin

 isBankRupt = True
 If isInDebtTo = 0 to 7 (in debt to a player)
 Transfer ownership of all properties to the other player
 Transfer the balance (even if negative) to the other player
 Else (in debt to bank)
 All properties become un-owned
 Balance disappears (given to bank)
End

Method name Boolean ownsSomething(Board board)
Class Name Player
Functionality If player owns assert, return true (go over all properties: street, utilities, metro)
Input Board object
Output Boolean value
Pseudo Code Begin

For(all cell objects){
 If (anycell.getOwner()=id) return true;
 Else return false

End

Method name move(Integer moveSteps)
Class Name Player
Functionality The player move for moveStep cells(cell by cell). If he pass GO, just collect $200!
Input Integer moveStep
Output Display player’s position
Pseudo Code Begin

 For (moveStep){
 Position = (Position + 1) Mod 40
 Move token image to next cell
 Sound // make a sound

 If (CellID==GO_CELL_ID) { // if pass GO
 Credit(200) // collect $200
 }

 }
 Cell.doAction() // Landed on cell, call doAction
End

Method name debit(Integer amount)

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 46

Class Name Player
Functionality To pay $amount.
Input Integer amount
Output Decrease balance
Pseudo Code Begin

Balance-=amount
If (balance<0){
 If (isComputer==true) call autoPlay()
 Message “Your balance is negative. You owe money. You must increase your funds
to a positive balance to continue the game, or declare bankruptcy.”
End

Method name credit(Integer amount)
Class Name Player
Functionality To collect $amouny.
Input Integer amount
Output Increase balance
Pseudo Code Begin

 Balance+=amount
End

Method name autoPlay(Board board)
Class Name Player
Functionality This is the AI for the computer player.
Input None
Output None
Pseudo Code This will be described in detail in section 4.1.19.

Method name autoMakeMoney(Board board)
Class Name Player
Functionality To make money by sell(buy) or mortgage(unmortgage) property automatically.

If nothing to sell and balance is les than 0: declare bankruptcy
Input None
Output None
Pseudo Code This will be described in detail in section 4.1.19.5

Method name buyProperty(Property theProperty)
Class Name Player
Functionality To buy a property.

Note: This function may need to be overloaded, to supply 3 different functions, one for each of:
Street, Metro and Utility classes (due to Visual Basic restrictions).

Input A property object
Output Change the color and owner of the property.
Pseudo Code Begin

 If (theProperty.getOwner<>0) “You cannot buy it. It is owned by a player”:exit
 If (Balance<cell[cellID].cost) “you do not have enough money”;exit;
 theProperty.setOnwer(playerID)
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 47

Method name offerTrade(Property theProperty, Integer amount)
Class Name Player
Functionality Want to trade a property with another player.

 Note: This function may need to be overloaded, to supply 3 different functions, one for each
of: Street, Metro and Utility classes (due to Visual Basic restrictions).

Input Property theProperty, Integer amount
Output Change the color and owner of the property
Pseudo Code? Begin

 If (Balance<theProperty.getCost()) “you do not have enough money”;exit;
 Call trade pop-up window.
End

Method name commitTrade(Property theProperty, Integer amount)
Class Name Player
Functionality Want to trade a property with another player.
Input Property theProperty, Integer amount
Output Change the color and owner of the property
Pseudo Code? Begin

If (Balance< theProperty..getCost()) “you do not have enough money”;exit;
Utility.display()
Player.debit(amount)
Player owner = theProperty.getOwner()
owner.credit(amount)
Player.debit(amount)

End

Method name resetDoubleCount()
Class Name Player
Functionality Set double count to zero
Input None
Output None
Pseudo Code? Begin

 If (doubleCount<3) “you can not”;exit;
 DoubleCount=0
End

Method name setInDebtTo (Integer inDebtToPlayer)
Class Name Player
Functionality To set whom does the player is debt to
Input Integer inDebtToPlayer
Output None
Pseudo Code Begin

 IsInDebtTo= inDebtToPlayer
End

Method name Integer isInDebtTo()
Class Name Player
Functionality To see whom does the player is debt to, return isDebtTo
Input None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 48

Output isInDebtTo
Pseudo Code Begin

 Return isInDebtTo
End

Method name hasGOJFC()
Class Name Player
Functionality If a player gas GOJFC
Input None
Output hasGOJFC
Pseudo Code Begin

 Return hasGOJFC
End

Method name goToJail()
Class Name Player
Functionality The player land on GO TO Jail cell. He will be sent to jail. He will go in straight ling rather

than cell by cell. So there is no action on the way.
Input None
Output None
Pseudo Code Begin

 inJail = true
 Move the player’s token in a straight line to the “in jail” cell.
End

Method name getOutofJail()
Class Name Player
Functionality The player get out of jail
Input None
Output None
Pseudo Code Begin

 IsInJail =false
 Move player’s token from “in jail” to “just visiting” (part of Jail cell)
End

Method name pay50GOJ()
Class Name Player
Functionality The player pays $50 and gets out of jail
Input None
Output None
Pseudo Code Begin

 debit(50)
 getOutofJail()
End

Method name useGOJFC(JFLDeck deck)
Class Name Player
Functionality The player use GOJEF of get out of jail (yes, without payment)

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 49

Input JFLDeck deck
Output None
Pseudo Code Begin

 getOutofJail()
 hasGoJFC = false
 JFLCard card = new JFLCard(GOJFLCardType)
 deck.insertCard(card)
End

Method name Boolean isComputer()
Class Name Player
Functionality Is the player is a computer player?
Input
Output Boolean value
Pseudo Code Begin

 Return isComputer
End

4.1.4 Class <JFLDeck>

Class Name JFLDeck
Inherits from None
Description Class JFLDeck is the deck of all the Just For Laugh Cards. There are twenty cards.

Note:
• The deck is implemented as a queue.
• A player takes a card from the deck, follows the card’s instructions (via the doAction()

method in JFLCard) and returns the card to the deck.
• If the card withdrawn is a GOJFC (Get Out of Jail Free Card), the he does not insert it back.

The player keeps the card. This is taken care of by the player attribute hasGOJFC. If the
player is in jail and decides to use his GOJFC, the card will be re-inserted into the deck, and
the player’s hasGOJFC will be set to False.

Visibility Data type Name Description Attributes
Private JFLCard deck[20] Array of 20 JFL Cards.
Visibility Method Name Description
Public shuffle() To make the deck random order
Public getCard() Return a JFL card(dequeue).

Methods

Public insertCard() After a card is used, put it back to the card
queue(enqueue).

4.1.4.1 Method Descriptions

Method name shuffle()
Class Name JFLDeck
Description Randomize the order of the cards in the deck. Note, this method runs only once for each game.
Input None
Output None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 50

Pseudo Code Begin
 Provide a random seed to the random number generator
 Generate 20 unique random numbers from 0 to 19
 Re-order the array of JFL cards using sequence generated in previous step
End

Method name JFLCard getCard()
Class Name JFLDeck
Description Get a JFLCard from the Deck (dequeue it)
Input Deck[20] in random order
Output A JFLCard
Pseudo Code Begin

 Dequeue the first card;
 Return this card
End

Method name insertCard(JFLCard)
Class Name JFLDeck
Description Put a used JFLCard back the Deck(into bottom, enqueue it)
Input A JFLCard
Output None
Pseudo Code Begin

 Put the card to the last position;
End

4.1.5 Class <JFLCard>

Class Name JFLCard
Inherits from None
Description Just For Laugh card object. Each card has it own type and methods

There should be no action for this class.
Visibility Data type Name Description
Private Integer cardType From 0 to 19

Attributes

Private String description
Visibility Name Description
Public display() Display the card.
Public Integer getType() Get the card type
Public String getDescription() Get the card description

Methods

Public doAction() For different type of card, do different actions.

4.1.5.1 Method Descriptions

Method Name display()
Class Name JFLCard
Description Display a Card in a pop-up window
Input None
Output None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 51

Pseudo Code Begin
Pop-up a window;
Display card.description on the window.

End

Method Name getType()
Class Name JFLCard
Description Returns the type of the JFL Card.
Input None
Output CardType
Pseudo Code Begin

Return type
End

Method Name String getDescription()
Class Name JFLCard
Description Get the card description string
Input None
Output Return the card description string.
Pseudo Code Begin

 Return description
End

Method Name doAction(Player player)
Class Name JFLCard
Functionality Performs the actions described by the card on the player.
Input Player
Output None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 52

Pseudo Code Message getDescription()
 Switch (getType())
 Case 0: // Go to jail
 Player.goToJail()
 Case 1: // Get Out of Jail Free Card
 Player.setHasGOJFC(True);
 Case 2: // Pass Go, collect 200$
 Player.move(40 – Player.getPosition());

Case 3: // Collect $250 (from bank)
 Player.credit(250);
Case 4: // Collect $200 (from bank)
 Player.credit(200);
Case 5: // Collect $150 (from bank)
 Player.credit(150);
Case 6: // Collect $100 (from bank)
 Player.credit(100) ;
Case 7: // Collect $50 (from bank)
 Player.credit(50) ;
Case 8: // Pay $250 (from bank)
 Player.debit(250) ;
Case 9: // Pay $200 (from bank)
 Player.debit(200) ;
Case 10: // Pay $150 (from bank)
 Player.debit(150);
Case 11: // Pay $100 (from bank)
 Player.debit(100) ;
Case 12: // Pay $50 (from bank)
 Player.debit(50) ;
Case 13: // Advance to Green street

Integer moveStepGo = (cell_id_green_street – player.getPosition()) Mod 40
Player.move(moveStepGo)

Case 14: // Advance to St-Laurent street
Integer moveStepGo = (cell_id_st_laurent_street – player.getPosition()) Mod 40
Player.move(moveStepGo);

Case 15: // Move forward 7 cells
Player.move(7);

Case 16: // Move forward 11 cells
Player.move(17);

Case 17: // Move forward 5 cells
Player.move(5);

Case 18: // Move back 3 cells
Player.move(-3);

Case 19: // Do Nothing

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 53

4.1.6 Class <Dice>

Class Name Dice
Inherits from None
Description A dice object can roll and give value.

Visibility Data type name Description Attribute
Private Integer diceValcue
Visibility Method Name Description
Public roll() To roll the dice to produce dice value

Methods

Public Integer getValue() To get the dice value

4.1.6.1 Method Descriptions

Method name roll()
Class Name Dice
Functionality General a random number from 1-6.
Input None
Output DiceValue
Pseudo Code Begin

Radom seed;
DiceValue = (radom number)%6 +1

End

Method name Integer getValue()
Class Name Dice
Functionality Get diceValue
Input None
Output DiceValue
Pseudo Code Begin

 Return diceValue
End

4.1.7 Class <Cell>

Class name Cell
Description Define functions for the inherited classes as a abstract class

Visibility Data Type Name Description
Private Integer id Id of the cell.

Attributes

Private String name Name of the cell.
Visibility Method Name Description
Public getId() Get the ID of a cell.
Public getName() Get the name of a cell
Public isOn() Check whether a player on a cell
Public display() Define a pure virtual function for its inherited classes
Public showInfo() Define a pure virtual function for its inherited classes

Methods

Public doAction() Define a pure virtual function for its inherited classes

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 54

4.1.7.1 Method Descriptions

Method name getId()
Description Get the value of cell’s id
Input None
Output Id
Return Type Integer

Pseudo Code

Begin
 Return value of id
End

Method name getName()
Description Get the name of a cell
Input None
Output Name
Return Type Integer

Pseudo Code

Begin
 Return name of cell
End

Method name isOn()
Description Get to know whether the token is landed on a cell
Input Player P
Output IsOn
Return Type Bool

Pseudo Code

Begin
 If (player’s position == cell’s id) then//a player is on cell
 Return isOn= true
 Else //a player is not on cell
 Return isOn= False
 Endif
End

Method name display()
Description Called whenever the state of the cell changes. This function will call the showCell() method in

the View module, and pass it all the information (parameters) it needs to refresh the cell on the
board.

Input None
Output None
Return Type None
Pseudo Code Begin

 // Do nothing. This function will be overloaded by all the sub-classes
 // This is like a pure virtual function, however, VB does not support this
End

Method name showInfo()
Description Called whenever a user clicks on a cell. This function will call the showInfo() function in the

View module, and pass it all the information (parameters) it needs to display on the pop-up
window.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 55

Input None
Output Pop up a info window
Return Type Void
Pseudo Code Begin

 showCellInfo(this.getName(), this.getType(), this.getDescription())
End

Method name doAction()
Description The doAction() method is called whenever a player lands on this cell. It contains the actions

that must occur when a player lands on it.
Input None
Output None
Return Type Void
Pseudo Code Begin

 // By default, there are no actions to be done
End

4.1.8 Class <Property>

Class name Property
Description Inherites from Cell class

Visibility Data Type Name Description
Private Integer price The price of property.
Private Integer isOwnedBy Owner of the property.

Attributes

Private Bool isMortgaged Flag for mortgage property or not.
Visibility Method Name Description
Public getPrice() Get price of property
Public getRent() Define a function to get rent for its inherited classes.
Public setOwner() Set owner of the property
Public getOwner() Get owner of the property
Public isMortgage() Know whether the property is mortgaged of not
Public mortagage() Sell or mortgage Property

Methods

Public unMortagage() Buy or un-mortgage Property

4.1.8.1 Method Descriptions

Method name getPrice()
Description Get the value of property value
Input None
Output Price
Return Type Integer

Pseudo Code

Begin
 Return value of price
End

Method name getRent()
Description Define a same function for its inherited classes
Input None
Output None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 56

Return Type Integer

Pseudo Code

Begin
 Define a virtual function of getRent()
End

Method name setOwner()
Description Set the property to a player
Input Player P
Output isOwnedBy
Return Type Void
Pseudo Code

Begin:
 Set value of isOwnedBy
End

Method name getOwner()
Description Get owner of the property
Input Player P
Output None
Return Type Int
Pseudo Code Begin

 Return the value of isOwnedBy
End

Method name isMortagated()
Description Get to know whether the property is mortgaged
Input Player P
Output IsMortagaged
Return Type Bool
Pseudo Code Begin

 Return value of ismortgaged
End

Method name mortgage()
Description Mortgage the property
Input Player P
Output None
Return Type Void
Pseudo Code Begin

 If(isMortgaged ==TRUE)then
 Error message(“This property has been mortgaged!”)
 Exit
 Else
 If (Int mortgagePrice = getMortage()) then

 P.Credit(mortagagePrice);//Mortgage the property
 isMortgaged =TRUE

 Endif
End

Method name UnMortagate()

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 57

Description UnMortgage the property
Input Player P
Output None
Return Type Void
Pseudo Code Begin

If(isMortgaged ==FALSE)then
 Error message(“This property has not been mortgaged!”)

 Exit
Else //un-mortgage the property

Int un-mortgagePrice = 1.10 * getPrice()
 P.debit(un-mortgagePrice);

isMortgaged =FALSE
 Endif
End

4.1.9 Class <Street>

Class name Street
Description Inherits from Property class

Visibility Data Type Name Description Attributes
Private integer hotelCount The number of hotel build by a player
Visibility Method Name Description
Public getRent() Get rent of street.
Public getHotelPrice() Get the cost of hotel(s)
Public buildHotel() Build hotel(s)
Public sellHotel() Sell hotel(s) to bank
Public display() Display the token is landed on Street cell
Public showInfo() Show the info of Street

Methods

Public doAction() Pay the rent to the owner of Street

4.1.9.1 Method Descriptions

Method name getRent()
Description Get rent of street
Input None
Output None
Return Type Integer

Pseudo Code

Begin
 float rate=0.1
 If (hotelCount ==1) rate=0.5
 If (hotelCount ==2) rate=1.2
 If (hotelCount==3) rate=2.2
 If (hotelCount==4) rate=2.50

Return price*rate // for rent
End

Method name getHotelPrice()
Description Get the cost of hotel(s)
Input Player P
Output None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 58

Return Type Void
Pseudo Code Begin

 Int rate = 0.6;
 Return price*rate;
End

Method name buildHotel()
Description Build the hotel on Street
Input Player P
Output Pop up a info window
Return Type Viod
Pseudo Code Begin

 If(hotelCount < 4)
 If (getBalance() < getHotelCost()) then
 Error Message(“Not enough money to build”)
 exit
 endif
 endif
 P.debit(Property.getHotelPrice())
 HotelCount = HotelCount + 1
End

Method name sellHotel()
Description Sell the hotel on Street to bank
Input Player P
Output None
Return Type Integer
Pseudo Code Begin

 GetOwner().credit(getHotelPrice())
 HotelCount = HotelCount -1
End

Method name display()
Description Show the token on Street cell
Input Player P
Output None
Return Type Void
Pseudo Code Begin

 This will be overloaded by the subclasses
End

Method name showInfo()
Description Display Window gives detail info on who owns Street or who is visiting on Street
Input Player P
Output Pop up a info window
Return Type Void

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 59

Pseudo Code Begin
 Pop display windows
 If (Street is not owned by any player) then

Show the name and price of Street
Show buy button

Else
Show the owner of Street

 Show the hotel on the Street.
 Show the rent of the Street.
 Endif
End

Method name doAction()
Description Buy or sell Street or Pay rent
Input Player P
Output None
Return Type Void
Pseudo Code Begin

 If (!isOwnedBy)
 If (a player decided to buy the un-owned Street)then
 P.buyProperty(amount)// buy Street

 Endif
 Else if (getOwner()==P)

 If (a player decided to build Hotel and Hotel<4) then
 buildHotel()
 Else if(a player decided to sell Hotel to bank)
 sellHotel()
 Else if (a player decided to sell the owned Street) then

 P.offerTrade()
 Else if (a player decided to mortgage Street) then
 Property.mortgage()
 Else if(isMortgage==TRUE & a player decided to un-mortgage
 Street)then
 Property.unmortgage()
 Else{payRent()}

 Endif
End

4.1.10 Class <Metro>

Class name Metro
Description Inherits from Property class

Visibility Data Type Name Description Attributes
None None None None
Visibility Method Name Description
Public getRent() Get rent of metro.
Public display() Display the token is landed on Metro
Public showInfo() Show the info of Metro

Methods

Public doAction() Deal with the transaction on metro

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 60

4.1.10.1 Method Descriptions

Method name getRent()
Description Get rent of metro
Input None
Output None
Return Type Integer

Pseudo Code

Begin
 Return Property.getPrice() *0.10 // get rent
End

Method name display()
Description Show the token on Metro cell
Input Player P
Output None
Return Type Void
Pseudo Code Begin

 Show the current player’s token on this cell
While (any other players on this cell)

 show the color of the player’s token
End

Method name showInfo()
Description Display Window gives detail info on who owns Metro or who is visiting on Metro
Input Player P
Output Pop up a info window
Return Type Void
Pseudo Code Begin

 Pop up a window to display name of metro
 if (there is a owner) then
 show rent
 show OK button
 If (Metro is not owned by any player) then
 Show buy button
 Else
 if (owned by current player) then
 show Mortgage/UnMortgage button
 else
 show Trade button

 Endif
 Endif
End

Method name doAction()
Description Buy or sell Metro
Input Player P
Output None
Return Type Void

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 61

Pseudo Code Begin
 If (!isOwnedBy)
 Exit // do nothing
 Else if (getOwner()==P)

CurrentPlayer.debit (getRent());
P.credit (getRent());

 Endif
End

4.1.11 Class <Utility>

Class name Utility
Description Inherited class from Property

Visibility Data Type Name Description Attributes
None None None None
Visibility Method Name Description
Public getRent() Get rent of utility.
Public display() Display the token is landed on Utility cell
Public showInfo() Show the info on Utility

Methods

Public doAction() Deal with the transaction with utility

4.1.11.1 Method Descriptions

Method name getRent()
Description Get rent of utility
Input None
Output None
Return Type Integer

Pseudo Code

Begin
 float rate=0.1
 Return price*rate// for rent
End

Method name display()
Description Show the token on Utility cell
Input Player P
Output None
Return Type Void
Pseudo Code Begin

 Show the current player’s token on this cell
While (any other players on this cell)

 show the color of the player’s token
End

Method name showInfo()
Description Display Window gives detail info on owner and rent(if any) for other players or

mortgage/unmortgage or Trade button for a current player.
Input Player P
Output Pop up a info window

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 62

Return Type Void
Pseudo Code Begin

 Pop up a window to display name of utility
 if (there is a owner) then
 show rent
 show OK button
 If (utility is not owned by any player) then
 Show buy button
 Else
 if (owned by current player) then
 show Mortgage/UnMortgage button
 else
 show Trade button

 Endif
 Endif
End

Method name doAction()
Description Buy or sell Utility
Input Player P
Output None
Return Type Void
Pseudo Code Begin

 If (!isOwnedBy){
 If (a player decided to buy the un-owned Utility)then
 P.buyProperty(int amount)// buy Utility

 }
 else if (getOwner()==P){
 if (a player decided to sell the owned Utility)then

 P.offerTrade()
 Else if (a player decided to mortgage Utility) then
 Property.mortgage()
 Else if(isMortgage==TRUE& a player decided to un-mortgage
 Utility)then
 Property.unmortgage()

 Endif
}
else{payRent()}

End

4.1.12 Class <Go>

Class name Go
Description Inherits from Cell class

Visibility Data Type Name Description Attributes
None None None None
Visibility Method Name Description Methods
Public display() Show token on this cell

4.1.12.1 Method Descriptions

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 63

Method name display()
Description show the token on Go cell
Input Player P
Output Token
Return Type Void

Pseudo Code

Begin
 Show current player’s token
 While (any non-current players landed on this cell)

Display small color token on the edge of cell
End

4.1.13 Class <Jail>

Class name Jail
Description Inherits from Cell class

Visibility Data Type Name Description Attributes
None None None None
Visibility Method Name Description
Public display() Display the player’s tokens landed on this cell

Methods

Public showInfo() Show the info about token(s)

4.1.13.1 Method Descriptions

Method name display()
Description Show the token on Jail cell
Input Player P
Output None
Return Type Void
Pseudo Code Begin

 Show current player’s token
 While (any non-current players landed on this cell)

Display small color token on the edge of cell
End

Method name showInfo()
Description Display a window for detail of the players who are currently in or visiting jail.
Input Player P
Output Pop up a info window
Return Type Void
Pseudo Code Begin

 Pop up a window
 While (any players is in jail)
 Show name and token of a player who is in jail now
 While (any player is visiting jail)
 Show name and token of a player who is visiting jail now
End

4.1.14 Class <OlympicPark>

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 64

Class name OlympicPark
Description Inherits from Cell class

Visibility Data Type Name Description Attributes
None None None None
Visibility Method Name Description Methods
Public display() show the token on this cell

4.1.14.1 Method Descriptions

Method name display()
Description show the token on OlympicPark cell
Input Player P
Output Token
Return Type Void

Pseudo Code

Begin
 Show current player’s token
 While (any non-current players landed on this cell)

Display small color token on the edge of cell
End

4.1.15 Class <GoToJail>

Class name GoToJail
Description Inherits from Cell class

Visibility Data Type Name Description Attributes
None None None None
Visibility Method Name Description
Public display() Display the player’s tokens landed on this cell

Methods

Public doAction() Move the player token to Jail

4.1.15.1 Method Descriptions

Method name display()
Description Show the tokens on GoToJail cell
Input Player P
Output Token
Return Type Void

Pseudo Code

Begin
 Show the tokens on GoToJail cell
End

Method name doAction()
Description Directly move a player to Jail cell
Input Player P
Output None
Return Type Void

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 65

Pseudo Code Begin
 The player Call GoToJail()
End

4.1.16 Class <JFL>

Class name JFL
Description Inherited class from Cell

Visibility Data Type Name Description Attributes
None None None None
Visibility Method Name Description
Public display() Display the player’s tokens landed on this cell

Methods

Public doAction() do something according to the JFLCard.

4.1.16.1 Method Descriptions

Method name display()
Description Show the tokens on JFL cell
Input Player P
Output Token
Return Type Void

Pseudo Code

Begin
 Show the token on JFL
 While (any players are visiting the JFL cell)
 Show color of a visiting player
End

Method name doAction()
Description Draw a JFLcard.

Do something according to the JFLCard.
Return the JFLCard (except GoOutJailFree card)

Input Player P
Output None
Return Type Void
Pseudo Code Begin

 P.move(int JFLid) // Move a token to cell
 JFLCard.drawCard(Player P)//draw a card
 PJFLCard.doAction(Player P)//do thing according to the card.
 If (not a GoOutJailFree card) then
 Return a JFLCard to deck
 Endif
End

4.1.17 Class <IncomeTax>

Class name IncomeTax
Description Inherits from Cell class
Attributes Visibility Data Type Name Description

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 66

 None None None None
Visibility Method Name Description
Public display() Display the player’s tokens landed on this cell

Methods

Public doAction() Debit the balance of a player for IncomeTax.

4.1.17.1 Method Descriptions

Method name display()
Description Show the tokens on IncomeTax cell
Input Player P
Output Token
Return Type Void

Pseudo Code

Begin
 Show the current player’s token on this cell

While (any other players on this cell)
 show the color of the player’s token
End

Method name doAction()
Description Debit the balance of a player for IncomeTax.
Input Player P

Board B
Output None
Return Type Void
Pseudo Code Begin

 Find Total property of a player
 Calculate TotalAmount of assets plus balance
 Int amount = TotalAmount * tax rate

 If(amount > 200) then
 Amount = 200
 endif
P.debit(int amount)// reduce the incomeTax from a player

End

4.1.18 Class <LuxuryTax>

Class name LuxuryTax
Description Inherits from Cell class

Visibility Data Type Name Description Attributes
None None None None
Visibility Method Name Description
Public display() Display the player’s tokens landed on this cell

Methods

Public doAction() Debit the balance of a player for LuxuryTax.

4.1.18.1 Method Descriptions

Method name display()
Description Show the tokens on LuxuryTax cell

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 67

Input Player P
Output Token
Return Type Void

Pseudo Code

Begin
 Show the current player’s token on this cell

While (any other players on this cell)
 show the color of the player’s token
End

Method name doAction()
Description Debit the balance of a player for luxury tax.
Input Player P

Board B
Output None
Return Type Void
Pseudo Code Begin

 Int amount = 75
P.debit(int amount)// reduce the LuxuryTax from a player

End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 68

4.1.19 Artificial Intelligence (AI)

This section will deal with the artificial intelligence component of the game. As this is a feature of the system that
needs to be dealt with separately, we chose to dedicate this section to it.

4.1.19.1 When is AI required?

The AI is required in the cases where a decision for a computer player needs to be made. One example is all
activities that can make the player’s balance less than zero. Second is that the player need to make decision in the
pre-roll dice and post-roll dice scenarios. As shown in the diagram below, they are:

• Buy property
• Build Hotel
• Sell Hotel
• Mortgage Property
• Unmortgage Property
• Get out of Jail
• Get out of Jail free
• Offer Trade
• Accept Trade
• Reject Trade
• Declare Bankruptcy

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 69

4.1.19.2 The AI rules

In summary, these are the decisions that the computer player must make.

• Before rolling the dice, check if in jail
• After rolling the dice, check if the player has mortgaged properties and unmortgage them, if possible.
• If the player pays money, (ex: pay rent) and the balance becomes negative, the autoMakeMoney() function

is called to attempt to increase funds.
• If the player lands on an un-owned property and the balance is greater than 120% of the cost of the

property, buy it.
• If it is possible to build a hotel and balance is greater than 110% of the cost of the hotel, build it.
• If the balance is positive but less than $100, sell a hotel.
• If the balance is positive but less than $200, mortgage a property.
• If the balance is greater than $500, un-mortgage a mortgaged property/
• If the player is in jail and has enough money to pay penalty and get out of jail, pay it.
• If balance is greater than $800 and has two streets of one district, offer a trade to buy another street of the

district. (Initiating a trade) This is an optional feature of the system.
• If a trade offer is made to a computer player, the computer must decide whether or not to accept the trade.

This can be done in a clever manner. We calculate a ratio = offerAmount / propertyPrice. The higher the
ratio, the higher the probability of the computer accepting the trade. We can calculate this probability using
a simple formula. Finally, we use the probability in a random number generator to simulate the
accepting/rejecting of the trade based on that probability. This algorithm can be seen below. 1

• The function autoMakeMoney() will attempt to increase the player’s funds in the following manner:
o Sell hotel one by one if has
o Mortgage utility if has one
o Mortgage metro if has one
o Mortgage street one by one if has
o If cannot sell and cannot mortgage, then declare bankruptcy.

4.1.19.3 AI Testing
The previous description of AI may be changed during the implementation phase, particularly in the test phase.
Testing AI is one of the test scenarios in Appendix B.

1
 Calculate ratio = offerAmount / propertyPrice

If (ratio <= 0.5)
 p = 0
Else
 p = (ratio - 0.5) * 20

randNum = Random Number from 0 to 1

If (randNum <= p)
 Accept trade
Else
 Reject trade

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 70

4.1.19.4 Details of the AI: autoPlay()

As the following diagram shows, show the autoPlay() function has three steps, pre-rollDice, rollDice and post-
rollDice. The AI decisions that need to be made are only on pre-rollDice and post-rollDice. Each will be described
using decision trees.

a u toP lay() D i a g r a m

P re R o llD ice ()

R o llD ice()

P o s t Ro l lD i ce ()

N e x tTu rn ()

N o te : A I he re

N o te: N o A I he re

N o te : A I he re

N o te: N o A I he re

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 71

Pre Roll Dice AI

This the first step of the autoPlay() that happens before roll dice. The autoPlay() function only checks if the player is
in jail or not. The exit point of this tree is rollDice().

Is in jail?

yes
No

Has GOJFC Card?

yes
No

Have $50?

yes
No

UseGOJFC()
RollDice()

GetOutOfJail()
RollDice() RollDice()

RollDice()

AutoPlay() Decision Tree Diagram
(i)

Pre Roll Dice: Is In Jail

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 72

Post Roll Dice AI

This is the second step of the autoPlay() that happens after rolling the dice. First, the balance will be checked. Then
Mortgaged situation will be checked. Concerning a computer initiating a trade, we just randomly determine if the
computer player does trading and which street and which player the computer want to trade with (Note, this is an
optional functionalities of this project). An important case is that if the balance of the player is less than zero, then
the function autoMakeMoney() will be called.

RollDice()

yes

Balance>=0?

AutoMakeMoney()
balance>=0?()

AutoPlay() Decision Tree Diagram
(II)

Post Roll Dice

Randomly determine to
trade/not trade;
land on cell()

Anything mortgaged?

Enough money to unmortgage?

Noyes

Unmortgage()
land on cell()

No

Land on cell

Land on cell

Radomly
trade?

yes No

Noyes

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 73

This is the autoPlay() function of the computer player that happens after the player lands on a Cell. Here, the
computer must decide whether or not to buy property and build hotels.

Balance>=0

NextTurn()

Cell has owner?

No

yesNo

Has enough money?

yes
No

Has enough money?

No

No

BuyProperty()
NextTurn()

BuildHotel()
NextTurn()

NextTrun()

NextTurn()

Owner is himself?

yes

Is Street?

yes

Has 4 hotel? NextTurn()

No

yes

yes

NextTurn()

AutoPlay() Decision Tree Diagram
(III)

Post Roll Dice

yes

Land on property?

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 74

4.1.19.5 Details of the AI: autoMakeMoney()

For autoMakeMoney() function, the basic idea is that a player can not sell a property other than selling a hotel. This
is the rule that applies to the human player. To make the game fair, we apply the rule to all the computers too. So he
can mortgage properties. This is the only change that a computer can declare bankruptcy.

Has utility?
yes

No

Mortgage()
autoPlay() Has metro?

yes
No

AutoMakeMoney() Decision Tree Diagram

Mortgage()
AutoPlay()

Has street?

yes
No

yes

No

Has hotel?

SellHotel()
AutoPlay()

DeclearBankrupty();
Give the negtive balance to

the creditor;
nextTurn();

Mortgage()
AutoPlay()

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 75

4.2 Module <View >
The view module consists of the different views that the user can see in the system. In Visual Basic terms,
these are the VB forms. The following six views constitute the view module:

(i) The GameStart view is the first window that appears when the Montrealopoly game is started. It allows
the user to select the names and tokens of the players of the game.

(ii) The MainWindow view is the main game play view. This is the view the players see when the game is
in progress. It consists of the game board area, the action buttons area, the player list, the message area and
the current player indicator.

(iii) The JFLCardWindow is a view that is shown to the user if he lands on a JFL cell. It displays to the user
the JFL card and what actions he must perform.

(iv) The CellInfoWindow view is a pop-up window that is displayed to the user when he clicks on a cell.
From this window, the use can perform many actions on the cell such as: buy the cell, build/destroy hotel,
mortgage/un-mortgage, trade, etc…

(iv) The TradeWindow view is used to perform property trades between users. It is designed to interact
with the user in: making a trade offer, making a counter offer, accepting or rejecting a trade.

As per the MVC architecture, the View module can be removed, and replaced by a different module, with
minimal impact on the system. In fact, this impact can be further minimized if the module’s interface is
defined clearly, while the internal mechanisms of the view can be different. For example, one can easily
replace the current Montreal-themed view with another view that has a different theme, assuming that the
new view module provides the same interface, and fulfills the requirements of that interface. This is a major
advantage of using MVC architecture.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 76

4.2.1 Module Class Diagram

JFLCardWindow

background : Image
cardDescription : Label
okButton : CommandButton

showJFLCard()

<<Form>>

GameEnd
mbackground : Image
startNewGameButton : CommandButton
exitGameButton : CommandButton
winnerName : TextBox

showWinner()

<<Form>>

GameStart
background : Image
playerName : TextBox
playerType : OptionButton
playerToken : OptionButton
playersList : Label
addPlayer : CommandButton
startGame : CommandButton

showGameStartWindow()

<<Form>>

MainWindow
background : Image
tokens[8] : Image
cells[40] : Image
rollDiceButton : CommandButton
payFineButton : CommandButton
endTurnButton : CommandButton
declareBankruptcyButton : CommandButton
messageArea : Label
playersList : Label
currentPlayer : Label
startGame : Menu
exitGame : Menu

moveToken()
showStreetCell()
showMetroCell()
showUtilityCell()
showGoCell()
showGoToJailCell()
showOlympicParkCell()
showJailCell()
showIncomeTaxCell()
showLuxuryTaxCell()
showJFLCell()
showInfoMessage()
showErrorMessage()

<<Form>>

TradeWindow

back ground : Image
propertyInfo : Label
t radeOfferAmount : TextBox
offerTradeButton : CommandBut ton
canc elTradeButton : CommandButton
acceptTradeBut ton : CommandButton
counterOfferButton : CommandButton
rejec tTradeButton : CommandButton

showTradeOfferWindow()
showTradeReplyWindow()
showTradeCounterOfferWindow()

<<Form>>

CellInfoWindow

background : Image
cellName : Label
cellDescription : Label
price : Label
ownerName : Label
rent0 : Label
rent1 : Label
rent2 : Label
rent3 : Label
rent4 : Label
mortgageValue : Label
hotelPrice : Label
buyButton : CommandButton
forgetItButton : CommandButton
okButton : CommandButton
mortgageButton : CommandButton
unMortgageButton : CommandButton
buildHotelButton : CommandButton
sellHotelButton : CommandButton
tradeButton : CommandButton

showCellInfo()
showStreetInfo()
showMetroInfo()
showUtilityInfo()

<<Form>>

View Class Diagram

The module interfaces consist of all the Public functions in these classes. In other words, the model module will
interface with the view module using all of the Public functions defined in the above diagram.

4.2.2 Class <GameStart>

Class Name GameStart (Form)
Description The first window that appears when the Montrealopoly game is started. It allows the user to

select the names and tokens of the players of the game.
Visibility Data Type Name Description
Private Image background The background image of the window.
Private TextBox playerName Allows the user to enter the player name.
Private OptionButton playerType This can be: Computer or Human player.
Private OptionButton playerToken Allows the user to select a player token.
Private Label playerList Displays the list of already added players.
Private CommandButton addPlayer Adds the player to the players list.

Attributes

Private CommandButton startGame Starts the game with the current players.
Visibility Method Name Description Methods
Public showGameStartWindow() Displays the current view to allow the user to

specify the player’s information.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 77

4.2.2.1 Method Descriptions

Method name showGameStartWindow()
Description Displays a window that allows the user to enter information about the players, and start

the game.
Input None
Output None
Return Type None

4.2.3 Class <MainWindow>

Class Name MainWindow (Form)
Description This is the main game play view. This is the view the players see when the game is in

progress. It consists of the game board area, the action buttons area, the player list, the
message area and the current player indicator.
Visibility Data Type Name Description
Private Image background Background image of the window.
Private Image tokens[8] Up to 8 tokens, one for each player.
Private Image cells[40] This is the image of the cell on the

board. Varies depending on cell type,
owner, players on the cell, number of
hotels, etc..

Private CommandButton rollDiceButton Allows the user to roll the dice.
Private CommandButton payFineButton Allows a user in jail to pay a 50$

fine and get out of jail.
Private CommandButton endTurnButton Allows the user to indicate that he

has finished his turn.
Private CommandButton declareBankruptcy Allows a user in debt to declare

bankruptcy and withdraw from game
Private Label messageArea This displays different messages to

the user, based on what occurs
during the game.

Private Label playersList This displays a list of the players in
the game, their balance and token.

Private Label currentPlayer Displays the name and token of the
current player.

Private Menu startGame Menu to start a new game

Attributes

Private Menu exitGame Menu to exit the game
Visibility Method Name Description
Public moveToken() Moves a player’s token by a number of spaces.
Public showStreetCell() Updates a Street cell according to its state.
Public showMetroCell() Updates a Metro cell according to its state.
Public showUtilityCell() Updates a Utility cell according to its state.
Public showGoCell() Updates the Go cell according to its state.
Public showGoToJailCell() Updates the GoToJail cell according to its state.
Public showOlympicParkCell() Updates the OlympicPark cell according to its state.
Public showJailCell() Updates the Jail cell according to its state.
Public showIncomeTaxCell() Updates the IncomeTax cell according to its state.

Methods

Public showLuxuryTaxCell() Updates the LuxuryTax cell according to its state.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 78

Public showJFLCell() Updates a JFL cell according to its state.
Public showInfoMessage() Displays a message in the message area.

Public showErrorMessage() Displays an error message in a pop-up window.

4.2.3.1 Method Descriptions

Method name moveToken()
Description Moves a player’s token by the specified number of positions.
Input playerId, numPositions
Output None
Return Type None
Pseudo Code Begin

 Determine which token is to be moved by using the playerId
 Calculate the path the token image must take
 Move the token image along the path, step by step.
End

Method name showStreetCell()
Description Updates a street cell, according to its state. A street cell can be owned/unowned,

mortgaged/unmortgaged, have a certain number of hotels, and have player tokens
landed on it.

Input Integer cellId, Street theStreet, Player owner, Player currPlayer, Player
playersOnCell[8]

Output None
Return Type None
Pseudo Code Begin

 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If cell is owned, display owner’s token at the top of the cell
 If cell is mortgaged, display the “Mortgaged” sign
 If cell has hotels built on it, display a number of “hotel” icons on cell
 If currPlayer is on this cell
 Display currPlayer’s token in center of cell
 For each player who’s token is on this cell
 Display a square with the player’s color in lower portion of cell
End

Method name showMetroCell()
Description Updates a metro cell, according to its state. A metro cell can be owned/unowned,

mortgaged/unmortgaged and have player tokens landed on it.
Input Integer cellId, Metro theStreet, Player owner, Player currPlayer, Player

playersOnCell[8]
Output None
Return Type None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 79

Pseudo Code Begin
 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If cell is owned, display owner’s token at the top of the cell
 If cell is mortgaged, display the “Mortgaged” sign
 If currPlayer is on this cell
 Display currPlayer’s token in center of cell
 For each player who’s token is on this cell
 Display a square with the player’s color in lower portion of cell
End

Method name showUtilityCell()
Description Updates a utility cell, according to its state. A street cell can be owned/unowned,

mortgaged/unmortgaged and have player tokens landed on it.
Input Integer cellId, Utility theStreet, Player owner, Player currPlayer, Player

playersOnCell[8]
Output None
Return Type None
Pseudo Code Begin

 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If cell is owned, display owner’s token at the top of the cell
 If cell is mortgaged, display the “Mortgaged” sign
 If currPlayer is on this cell
 Display currPlayer’s token in center of cell
 For each player who’s token is on this cell
 Display a square with the player’s color in lower portion of cell
End

Method name showGoCell()
Description Updates the Go cell, according to its state. A Go cell can have any number of players

(up to 8) whose tokens are on it.
Input Integer cellId, Player currPlayer, Player playersOnCell[8]
Output None
Return Type None
Pseudo Code Begin

 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If currPlayer is on this cell
 Display currPlayer’s token in center of cell
 For each player who’s token is on this cell
 Display a square with the player’s color in lower portion of cell
End

Method name showGoToJailCell()
Description Updates the GoToJail cell, according to its state. A GoToJail cell can only have one

player token on it, momentarily, since any player who lands on it, will go to jail.
Input Player currPlayer
Output None
Return Type None

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 80

Pseudo Code Begin
 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If currPlayer is on this cell
 Display currPlayer’s token in center of cell
End

Method name showInfoMessage()
Description Displays an informational message in the message area, which is on the right-hand side

panel of the form.
Input String message_in
Output None
Return Type None
Pseudo Code Begin

 messageArea.text = messageArea.text + message_in
End

Method name showErrorMessage()
Description Displays an error message to the user in a pop-up MessageBox window. The user can

then click OK to continue.
Input String message_in
Output None
Return Type None
Pseudo Code Begin

 MessageBox(message_in)
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 81

Method name showOlympicParkCell()
Description Updates the OlympicPark cell, according to its state. An OlympicPark cell can have

any number of players (up to 8) whose tokens are on it.
Input Integer cellId, Player currPlayer, Player playersOnCell[8]
Output None
Return Type None
Pseudo Code Begin

 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If currPlayer is on this cell
 Display currPlayer’s token in center of cell
 For each player who’s token is on this cell
 Display a square with the player’s color in lower portion of cell
End

Method name showJailCell()
Description Updates the Jail cell, according to its state. A Jail cell can have any number of players

(up to 8) whose tokens are in the visiting area, and any number of players whose tokens
are in the “In Jail” area.

Input Integer cellId, Player currPlayer, Player playersOnCell[8]
Output None
Return Type None
Pseudo Code Begin

 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If currPlayer is on this cell
 If currPlayer is in jail
 Display currPlayer’s token in the “In Jail” area
 Else
 Dislpay currPlayer’s token in the “Just Visiting” area
 For each player who’s token is on this cell
 If player is in jail
 Display a square with the player’s color in the “In Jail” area
 Else
 Display a square with the player’s color in the “Just Visiting” area
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 82

Method name showIncomeTaxCell()
Description Updates the IncomeTax cell, according to its state. The IncomeTax cell can have any

number of players (up to 8) whose tokens are on it.
Input Integer cellId, Player currPlayer, Player playersOnCell[8]
Output None
Return Type None
Pseudo Code Begin

 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If currPlayer is on this cell
 Display currPlayer’s token in the center of the cell.
 For each player who’s token is on this cell
 Display a square with the player’s color in the lower portion of the cell.
End

Method name showLuxuryTaxCell()
Description Updates the LuxuryTax cell, according to its state. The LuxuryTax cell can have any

number of players (up to 8) whose tokens are on it.
Input Integer cellId, Player currPlayer, Player playersOnCell[8]
Output None
Return Type None
Pseudo Code Begin

 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If currPlayer is on this cell
 Display currPlayer’s token in the center of the cell.
 For each player who’s token is on this cell
 Display a square with the player’s color in the lower portion of the cell.
End

Method name showJFLCell()
Description Updates a JFL cell, according to its state. A JFL cell can have any number of players

(up to 8) whose tokens are on it.
Input Integer cellId, Player currPlayer, Player playersOnCell[8]
Output None
Return Type None
Pseudo Code Begin

 Using cellId, determine the coordinates of the cell to be updated
 Draw the cell background image
 If currPlayer is on this cell
 Display currPlayer’s token in the center of the cell.
 For each player who’s token is on this cell
 Display a square with the player’s color in the lower portion of the cell.
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 83

4.2.4 Class <JFLCardWindow>

Class Name JFLCardWindow (Form)
Description This view is shown to the user if he lands on a JFL cell. It displays to the user the JFL card

and what actions he must perform.
Visibility Data Type Name Description
Private Image background Background image of the window.
Private Label cardDescription Displays the description of the JFL card.

Attributes

Private CommandButton okButton The game proceeds when the player
clicks ok.

Visibility Method Name Description Methods
Public showJFLCard() Displays this pop-up window with the given card description.

4.2.4.1 Method Descriptions

Method name showJFLCard()
Description Displays this pop-up window with the given card description.
Input String cardDescription
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Draw the window background
 Display the card description
 Display the okButton
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 84

4.2.5 Class <CellInfoWindow>

Class Name CellInfoWindow (Form)
Description This view is a pop-up window that is displayed to the user when he clicks on a cell. From this

window, the use can perform many actions on the cell such as: buy the cell, build/destroy
hotel, mortgage/un-mortgage, trade, etc…
Visibility Data Type Name Description
Private Image background Background image of the window.
Private Label cellName Displays the name of the cell.
Private Label cellDescription Displays the description of the cell.
Private Label price Displays the purchase price of the cell.
Private Label ownerName Displays the owner of the cell.
Private Label rent0 Displays the rent with no hotels.
Private Label rent1 Displays the rent with 1 hotel.
Private Label rent2 Displays the rent with 2 hotels.
Private Label rent3 Displays the rent with 3 hotels.
Private Label rent4 Displays the rent with 4 hotels.
Private Label mortgageValue Displays the mortgage value of the cell.
Private Label hotelPrice Displays the price of building a hotel.
Private CommandButton buyButton Allows user to buy the property.
Private CommandButton okButton Returns control to the MainWindow.
Private CommandButton mortgageButton Allows user to mortgage a property.
Private CommandButton unMortgageButton Allows user to un-mortgage a property.
Private CommandButton buildHotelButton Allows user to build a hotel.
Private CommandButton sellHotelButton Allows user to destroy (sell) a hotel.

Attributes

Private CommandButton tradeButton Allows the user to trade the property.
Visibility Method Name Description
Public showCellInfo() Displays this view with general information about a cell.
Public showStreetInfo() Displays this view with information specific to a Street cell.
Public showMetroInfo() Displays this view with information specific to a Metro cell.

Methods

Public showUtilityInfo() Displays this view with information specific to a Utility cell.

4.2.5.1 Method Descriptions

Method name showCellInfo()
Description Displays a pop-up window when a user clicks on a cell. This window contains

information about the cell.
Input Integer cellName, cellType, cellDescription
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Depending on the cellType, draw appropriate background
 Display the cellName
 Display the cellDescription
 Display the ok button
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 85

Method name showStreetInfo()
Description Displays a pop-up window when a user clicks on a street cell. This window contains

information about the street, owner, price, rent, hotel and mortgage.
Input Player currPlayer, Street theStreet
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Draw the background specific to a street
 Display the street name using theStreet.getName()
 Display the street buying price using theStreet.getPrice()
 If the street is owned by someone
 Display the street owner using theStreet.getOwner()
 Else
 Display the word “Vacant”
 Display the base rent using theStreet.getRentWithHotels(0)
 Display the rent with 1 hotel using theStreet.getRentWithHotels(1)
 Display the rent with 2 hotel using theStreet.getRentWithHotels(2)
 Display the rent with 3 hotel using theStreet.getRentWithHotels(3)
 Display the rent with 4 hotel using theStreet.getRentWithHotels(4)
 Display the mortgage value using theStreet.getMortgage()
 Display the cost of building a hotel using theStreet.getHotelPrice()
 If the street is unowned
 Display buy and ok buttons
 Else
 If theStreet.getOwner() = currPlayer (ie the player who clicked is the owner)
 If theStreet.isMortgaged()
 Display unMortgage and ok buttons
 Else
 If theStreet.hotelCount() = 0
 Display mortgage button
 Display buildHotel, sellHotel and ok buttons
 Else
 Display trade and ok buttons
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 86

Method name showMetroInfo()
Description Displays a pop-up window when a user clicks on a Metro cell. This window contains

information about the Metro cell.
Input Player currPlayer, Metro theMetro
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Display the metro background image
 Display the metro name using theMetro.getName()
 Display the street buying price using theMetro.getPrice()
 If the street is owned by someone
 Display the street owner using theMetro.getOwner()
 Else
 Display the word “Vacant”
 Display the rent value using theMetro.getRent()
 Display the mortgage value using theMetro.getMortgage()
 If the street is unowned
 Display buy and ok buttons
 Else
 If theMetro.getOwner() = currPlayer (ie the player who clicked is the owner)
 If theMetro.isMortgaged()
 Display unMortgage and ok buttons
 Else
 Display Mortgage and ok buttons
 Else
 Display trade and ok buttons
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 87

Method name showUtilityInfo()
Description Displays a pop-up window when a user clicks on a cell. This window contains

information about the cell.
Input Player currPlayer, Utility theUtility
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Display the utility background image
 Display the metro name using theUtility.getName()
 Display the street buying price using theUtility.getPrice()
 If the street is owned by someone
 Display the street owner using theUtility.getOwner()
 Else
 Display the word “Vacant”
 Display the rent value using theUtility.getRent()
 Display the mortgage value using theUtility.getMortgage()
 If the street is unowned
 Display buy and ok buttons
 Else
 If theUtility.getOwner() = currPlayer (ie the player who clicked is the owner)
 If theUtility.isMortgaged()
 Display unMortgage and ok buttons
 Else
 Display Mortgage and ok buttons
 Else
 Display trade and ok buttons
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 88

4.2.6 Class <TradeWindow >

Class Name TradeWindow (Form)
Description This view is used to perform property trades between users. It is designed to interact with the

user in: making a trade offer, making a counter offer, accepting or rejecting a trade.
Visibility Data Type Name Description
Private Image background Background image of the window.
Private Label propertyInfo Displays information about the

property being traded.
Private TextBox tradeOfferAmount Allows the user to enter the amount he

is willing to pay.
Private CommandButton offerTradeButton Submits trade proposal.
Private CommandButton cancelTradeButton Cancels the trade proposal.
Private CommandButton acceptTradeButton Allows user to accept the trade.
Private CommandButton counterOfferButton Allows owner to make a counter offer.

Attributes

Private CommandButton rejectTradeButton Allows owner to reject the proposal.
Visibility Method Name Description
Public showTradeOfferWindow() Displays this view, allowing a user to make

a trade offer to purchase another player’s
property.

Public showTradeReplyWindow() Displays this view, allowing the owner of
the property to reply to a trade offer made by
another player.

Methods

Public showTradeCounterOfferWindow() Displays this view, allowing the trade
initiator to reply to a counter offer.

4.2.6.1 Method Descriptions

Method name showTradeOfferWindow()
Description This window is displayed when a user wants to make a trade offer to another player.

Here, the initiator of the trade can enter the amount he is willing to pay to buy the
property.

Input String propertyType, propertyName, String ownerName, String traderName
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Draw the window background
 Display the propertyType, propertyName
 Display the ownerName
 Display the traderName
 Display the tradeOfferAmount TextBox
 Display the offerTrade, cancelTrade buttons
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 89

Method name showTradeReplyWindow()
Description This window is displayed to the owner of a property, when another player has made an

offer to buy this property. It allows the user to accept / reject / counter-offer the trade.
Input String propertyType, propertyName, String ownerName, String traderName, String

priceProposed
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Draw the window background
 Display the propertyType, propertyName
 Display the ownerName
 Display the traderName
 Display the priceProposed
 Display the tradeOfferAmount TextBox
 Display the acceptTrade, counterOffer and rejectTrade buttons
End

Method name showTradeCounterOfferWindow()
Description This window is displayed to the initiator of a trade, when the owner of the property

being traded has made a counter offer. It allows him to accept / reject the counter-offer.
Input String propertyType, propertyName, String ownerName, String traderName, String

priceProposed
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Draw the window background
 Display the propertyType, propertyName
 Display the ownerName
 Display the traderName
 Display the priceProposed
 Display the tradeOfferAmount TextBox
 Display the acceptTrade, rejectTrade buttons
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 90

4.2.7 Class <GameEndWindow >

Class Name GameEndWindow (Form)
Description

Visibility Data Type Name Description
Private Image background Background image of the window.
Private CommandButton startNewGameButton Allows user to start a new game.
Private CommandButton exitGameButton Allows user to exit the game.

Attributes

Private TextBox winnerName Displays the name of the winner.
Visibility Method Name Description Methods
Public showWinnerWindow() Displays this view, showing the winner of the game.

Method name showWinnerWindow()
Description This window is displayed when a winner has been declared in the game. It allows the

user to either exit the game or to start a new game.
Input String winnerName
Output None
Return Type None
Pseudo Code Begin

 Create a new pop-up window
 Draw the window background
 Display the winnerName
 Display the startNewGame and exitGame buttons
End

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 91

4.3 Module <Controller >
For the Controller module, we do not have any class since we implement the game in VB. In VB, the views
are forms or windows (as described in section 4.2). There are many functions and event handlers associated
with each form. These event handlers and functions make up the controller module.

4.3.1 Module Class Diagram
Our project has six forms (windows). They are:

• The GameStart window

• The Main window

• The JFLCard window

• The Trade window

• The CellInfo window

• The GameEnd window

Each window has some event handlers that are associated with the window. Mostly, these are button click
events. The one exception is the event handler for user-clicks on a cell. This is the event cell_Click() of the Main
window. Note that there are 40 cells of different types, having different attributes. The display functionalities of
each cell_Click() are different. The status of the cells will also change the display content in the window. The details
are described in the GUI section. The event handlers are shown in the diagram below.

GameStartEventHandler

<<Event>> addPlayer_Click()
<<Event>> Startgame_Click()

<<Class Module>>

JFLCardEventHandler

<<Event>> ok_Click()

<<Class Module>>

Gam eE ndEventHandler

<<Event>> startaNewGame_Click()
<<Event>> exitGame_Click()

<<Class Module>>

CellInfoEventHandler

<<Event>> buyBut ton_Click()
<<Event>> forget ItButton_Clic k()
<<Event>> bui ldHotelButton_Cl ick()
<<Event>> sel lHotelButton_Click()
<<Event>> mortgageBut ton_Click()
<<Event>> unm ortgageButton_Click()
<<Event>> tradeBut ton_Click()
<<Event>> okButton_Click()
<<Event>> startGame_Cl ick()
<<Event>> exi tGam e_Click()

<<Class Module>>

TradeWindowEventHandler

<<Event>> deal_Click()
<<Event>> wantMoreMoney_Click()
<<Event>> iWantIt_Click()
<<Event>> forgetIt_Click()
<<Event>> ok_Click()

<<Class Module>>

MainWindowEventHandler

<<Event>> RollDic e_Click()
<<Event>> NextTurn_Click()
<<Event>> payFine_Click()
<<Event>> useGOJFC_Click()
<<Event>> declareBankruptcy_Click ()
<<Event>> cel l_Clic k()

<<Class Module>>

Controller Class Diagram

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 92

4.3.2 Event Handlers

The main function of the controller module is to handle events and control the Model. Therefore, the
controller will handle the events (user-clicks on elements of the form) and then manipulate the Model
module through its interface.

Another function of the controller module is to validate input. If any error is found, the event handler will
simply pass an error message to the MainWindow view. This will be done via the showErrorMessage()
function which will display a message box with the error message.

4.3.2.1 GameStart Window Event Handlers

Event addPlayer_Click():
Check the input information that includes user name and user type (human or computer and token file name that
selected.).
If any of them is missing, pass error message to the window and the window will pop up message box to inform
what the user did not input.

• If the information is completed, then list the player’s name in the player list box.

Event startGame_Click():
Initialize the board, create a board object and create all the cell objects: 22 street cells, six JFL cards cells, four
Metro cells, two utilities cells, one Go cell, one GotoJail cell, one pay income tax cell, one pay luxury tax cell one
jail cell and one Olympic park cell;

• Create two dices objects, a deck of twenty JFJ cards and numbers of player objects (from two to eight).
• Randomly generate the ID of each player.
• Assign $1500 to each player (ie: Player.credit(1500))
• Randomly generate the ID of each JFL card in the deck.
• Display all the cells. For each one, call the display() method.
• Assign the control to the first player, make currPlayer = 1.

4.3.2.2 Main Window Event Handlers
The main window has several buttons and 40 cells. Clicking on a button will active the event handlers. Clicking
on the cells will display the CellInfo window. In addition, the main window has a menu bar that has several
functionalities. Those can also be the event handlers.

The functionalities in the menu bar are:
l Open file(optional)
l Save file(optional)
l Change option(optional)
l Help(optional)
l Start game: start the startGame window to start a new game.
l Exit game: exit the game.

The most important event handlers are the button-click event handlers and cell-click event handlers.

Event RollDice_Click()

• Disable the rolldice button
• Enable the nextTurn button
• Call Board.rollDice() to roll the two dices
• If roll double, call currPlayer. incDoubleCount() to increase the double count of the payer.
• Move the token of the player by calling the currPlayer.move(int moveStep) function.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 93

Note:
• Before RollDice_Click(), a player can do any of the pre-roll dice actions.
• Similarly, after RollDice_Click(), a player can do any of the post-roll dice actions.

Event NextTurn_Click()
• Enable the rolldice button;
• Disable the nextTurn button;
• Pass the control to the next player by calling the method Board.endTurn()

Event PayFine_Click()

• Call Board.getCurrPlayer() to retrieve the current player object
• Call Player.pay50GOJ()

Event UseGOJFC_Click()

• Call currPlayer.useGOJFC() function to change the inJail attribute to false
• The currpPlayer can play again.

Event Cell_Click()
• Determine the cell type and id
• Call Board.getStreet(id) (or getUtility(id)) to get the Cell object
• Call Cell.showInfo(), which will pass the information about the cell to the View module’s showStreetInfo()

function.

Event DeclareBankruptcy_Click()

• If the balance is not negative, send a error message to the main window.
• Otherwise, call currPlayer.declareBankruptcy() function to set the player bankrupted.
• Pass the control to the next player.

4.3.2.3 JFLCard Window Event Handlers

Event Ok_Click()

• Close the JFL card window.
• Call JFLCard.doAction() function to manipulate the current player.
Note, the details of how each JFL card does its action is described in section 4.1.

4.3.2.4 CellInfo Window Event Handlers

Event BuyIt_Click()

• Call Board.getCurrPlayer() to get the current player object.
• Call Player.buyProperty(property id)

Event ForgetIt_Click()

• Close the window.
• Set the main window as the active window.

Event BuildHotel_Click()
• Call Board.getStreet() to get the Street object that needs to be modified.
• If the player cannot buy the property since he does not have enough money, a error message will be

displayed.
• Otherwise, Call street.buildHotel() function to add a hotel on the street.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 94

Event SellHotel_Click()

• Call Board.getStreet() to get the Street object that needs to be modified.
• Call street.sellHotel() function to destroy a hotel on the street.

Event Mortgage_Click()

• Call property.mortgage() function to mortgage it.
Note, in this case, the user will not make mistake like mortgage a mortgaged property since the mortgage button
is disabled if the property has been mortgaged.

Event Unmortgage_Click()
• Call property.unMortgage() function to mortgage it.
Note, in this case, the user will not make mistake like un-mortgage an un-mortgaged property since the
mortgage button is disabled if the property has been mortgaged.

Event Trade_Click()
• Display trade window.
• Find the player to trade by calling cell.getOwner() function

Event Ok_Click()
• Close the window
• Set the main window as the active window.

4.3.2.5 Trade Window Event Handlers
Event Deal_Click()

• The trade is accepted.
• Call Player.commitTrade() to update the Model with the trade transactions
• The window is closed.

Event WantMoreMoney_Click()

• Another player can input the cost he wants to offer.

Event IWantIt_Click()

• Initiate the negotiations for the property
• Check if the input value is valid or not.

Event ForgetIt_Click()
• Close the window. The player does not want to trade on this property.
• Set the main window as the active window.

Event Ok_Click()
• Close the window.
• Set the main window as the active window.

4.3.2.6 GameEnd Window Event Handlers
Event StartaNewGame_Click()

• Close the gameEnd window.
• Open the startGame window. Start a new game.

Event ExitGame_Click()

• Close the window and end the game.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 95

5. Team Members Log Sheets

5.1 Stefan Thibeault

Date Task Duration
Sept. 30 Initial design meeting 1 Hour
Oct. 5 Group meeting – came up with class diagram 6 Hours
Oct. 7 Group meeting – discussed class diagrams 1 Hour
Oct. 9 Quick meeting with the professor 0.5 Hours
Oct. 11 Researched MVC model 4 Hours
Oct. 12 Group Meeting – Worked with MVC Model 8 Hours
Oct. 13 Worked on system architecture 4 Hours
Oct. 15 Worked on section 2 4 Hours
Oct. 18 Worked on section 3.2 4 Hours
Oct. 19 Group meeting – reviewed decision trees, activity diagrams, made corrections 10 Hours
Oct .20 Completed corrections 1 Hour
Oct. 22 Sections 2 and 3.2 revisions 6 Hours
Oct. 23 Final revisions 2 Hours
 Total: 51.5

5.2 Robert Hanna

Date Task Duration
Sept. 30 Initial design meeting 1 Hour
Oct. 5 Group meeting – came up with class diagram 6 Hours
Oct. 7 Group meeting – discussed class diagrams 1 Hour
Oct. 9 Quick meeting with professor 0.5 Hours
Oct. 12 Group Meeting – Worked with MVC Model 8 Hours
Oct. 17 Individual – Section 4.1 part 2 corrections, comments 4 Hours
Oct. 15 Individual – Rational Rose VB integration 4 Hours
Oct. 18 Section 4.1 part 1 corrections 2 Hours
Oct. 19 Group meeting – reviewed decision trees, activity diagrams 6 Hours
Oct. 19 Individual – View module 4 Hours
Oct. 20 Individual – Finalized View module 2.5 Hours
Oct. 21 Individual – Document Integration and corrections 8 Hours
Oct. 22 Individual – Section 3.3 – Dynamic Models

Document Integration – corrections
12 Hours

Oct. 23 Individual – Section 4.3 integration, correction 5 Hours
Oct. 23 Final Revision 2 Hours
 Total: 66

5.3 Simon Lacasse

Date Task Duration
Oct. 5 Group meeting – came up with class diagram 6 Hours
Oct. 7 Group meeting – discussed class diagrams 1 Hour
Oct. 19 Implementation Group meeting 3 Hours
Oct. 20 Worked on Implementation 6 Hours
 Total: 16

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 96

5.4 Alexandre Bosserelle

Date Task Duration
Sept. 30 Initial design meeting 1 Hour
Oct. 7 Group meeting – discussed class diagrams 1 Hour
Oct. 17 User interface for design document 4 Hours
Oct. 18 User interface for design document and design of new graphical components 12 Hours
 Total: 18 Hours

5.5 Eugena Zolorova

Date Task Duration
Sept. 30 Initial design meeting 1 Hour
Oct. 7 Group meeting – discussed class diagrams 1 Hour
Oct. 21 Individual – Introduction 3 Hours
 Total: 8 Hours

5.6 Zhi Zhang

Date Task Duration
Sept 28 Meeting/scenario, Class for prototype 1 6
Sept 29 Ai rules 2
Sept 30 Scenario design/ Class prelimary design/ Initial design meeting 5
Oct 1 Class preliminary design 7
Oct 2 Scenario design 6
Oct 3 Scenario design 8
Oct 4 Scenario design/Testing scenario 8
Oct 5 Meeting/Class design/Ai rules/JFLCard 6
Oct 6 Class detail design: Board 4
Oct 7 Group meeting- Class detail design/discussion: Dice JFLDeck 7
Oct 8 Class detail design: player 6
Oct 9 Class detail design: AI Detail player 9
Oct 10 Revise: Check result with group mate 5
Oct 11 Study MVC design 6
Oct 12 Meeting & MVC 6
Oct 15 Decision tree of AI:AutoPlay() 5
Oct 16 Decision tree of AI: AutoMakeMoney() 4
Oct 18 Activity diagrams/report 4.3 4
Oct 19 Meeting/revise diagrams 9
Oct 20 Report 4.3 5
Oct 21 Report 4.3/revise diagrams 4
Oct 22 Report 4.3, appendix I, II 9
 Total: 130 Hours

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 97

5.7 Xin Xi

Date Task Duration
Sept. 30 Initial design meeting 1 Hour
Oct. 5 Group meeting – came up with class diagram 6 Hours
Oct. 7 Group meeting – discussed class diagrams 1 Hour
Oct. 9 Individual – Class Descriptions 6 Hours
Oct. 10 Individual – Class Descriptions 6 Hours
Oct. 12 Group Meeting – Worked with MVC Model 8 Hours
Oct. 19 Group meeting – reviewed decision trees, activity diagrams 6 Hours
Oct. 20 Individual – Class Description Corrections 3 Hours
 Total: 37 Hours

5.8 Patrice Michaud

Date Task Duration
Sept. 30 Initial design meeting 1 Hour
Oct. 7 Group meeting – discussed class diagrams 1 Hour
Oct. 12 Group Meeting – Worked with MVC Model 4 hours
Oct. 19 Implementation Group meeting 3 Hours
 Total: 9 Hours

5.9 Hu Shan Liu

Date Task Duration
Sept. 30 Demonstrated mortgage program 0.5 Hour
Oct. 7 Group meeting – discussed class diagrams 1 Hour
Oct. 12 Group Meeting – Worked with MVC Model 4 Hours
Oct. 19 Implementation Group meeting 3 Hours
 Total: 8.5 Hours

5.10 Jens Witkowski

Date Task Duration
Oct. 19 Implementation Group meeting 3 Hours
 Total: 3 Hours

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 98

6. Appendix A – Game Flow

General activity diagram of
 the Montrealopoly game

Start Game

Play Game

Exit GamePlay Again

Exit Game

End Game

Play Again

There are three main scenarios that make the game, the start game, the play game and the end game
scenario. The first and last scenario is composite of one scenario for each. The play game scenario has
several sub scenarios to make the game attractive.

This diagram gives the general structure of the game.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 99

6.1 Start Game Scenario
Game start scenario contains several steps.
• The main functionality is to input the player information, initializing the game.
• All the actions in this scenario are in time order.
• The details of the action are: (see the following figure)

0) Display the “Start a game interface”
1) Input player name(s);
2) Select tokens of each players;
3) Input cyber/human player;
4) Initial the board, create all the objects, set all the prices and initialize variables like the time delay, the

 tax rate, rent rate, the mortgage/unmortgage rate.
4) Generate the random playing order,i.ie, shuffle the players.
5) Assign $1500 each player.
6) Display Tokens.
7) Shuffle JFLCards.

 The details of this scenario are shown in the section 3.3.1 as an example of the dynamic module interface.

Input player name. Select token Select human/computer

[Start Game]

Click AddPlayer Button
[input next player]

Click Start Game Button

Shuffle Players

Give $1500 to each Player

Display Tokens

Initialize Board, create all objects

Shuffle JFL Cards

[Play Game/Exit Game]

Activity diagram Of the Montrealopol Game
(I)

Start Game

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 100

6.2 Play Game Scenario
Play game scenario consists of several scenarios since it is the core of the game and implements most of the
requirements.

• The main functionality is playing the game and the detailed description of them will be in the following
sections.

• All the actions in this scenario are in time order and logical order. Some of the action may not be done.
• The details of the action are: (see the following figure)

1) The next turn (I.e., to pass the control to the next player.)
2) The pre-roll dices
3) The roll dices, and
4) The post-roll dices.

• The transitions among the action are:

1) Next turn to end game: A player is bankrupt, only one player left so the game is over.
2) Pre roll dices to end game: the player click exit game button.
3) Post roll dices to end game: either there is a winner or the player click exit game button.
4) Post roll to roll dices: if a player rolls double, he will continues to roll the dices again.
5) Post roll dices to post roll dices: a player can do many actions in this step.
6) Post roll dices to next turn: control of the game is passed onto the next player.

General activity diagram of
 the Montrealopoly game

(II)
Play Game

Next Turn

Pre-Roll Dices

Roll Dices

Post-Roll Dices

Exit Game

Exit Game

To Do more
actions

Roll double

This player
bankrupted

To start Game or Exit Game

From Start Game

To Do more
actions

This player
bankrupted

Next player

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 101

6.3 Pre-roll Dices
This scenario contains all the activities that can be done before rolling the dices. The player can:

• Try to get out of the jail by using GOJFC card. Get out of jail means to change attribute. Finally, return the
card back to the deck

• Pay $50 if the player is in the jail. If a player is in the jail he can pay $50 to go out of the jail if he does not
have GOJFC card.

• Change options: the player may turn on or off the music, enable/disable the time delay.
• Display the help information. Similar to change option, this function is in the menu. Player can click the

File of the menu and find the Exit item. Click it to exit the game.
• Exit game. This function is in the menu. Player can click the File of the menu and find the option item.

Click any cell.
If a user clicks on a cell, he can do several actions:
• The information of the cell will be displayed
Then a player can:
• Mortgage an unmortgaged property. If the property owner is the player and he did not mortgage the

property, a mortgage button is displayed that enables the player get certain amount of cash to get it
mortgaged. This changes the attribute of the cell.

• Unmortgage a mortgaged property. If the property owner is the player and if he mortgaged the property, an
unmortgaged button is displayed that enables the player to pay certain amount of cash to get it
unmortgaged. This changes the attribute of the cell.

• Build a hotel. If the street owner is the player and he did not mortgaged the street, a build hotel button and a
sell hotel button is displayed that enables the player to pay a certain amount of cash to build a hotel.
The interface of build hotel: See section 3.3.2.

• Sell a hotel. If the street owner is the player and he did not mortgaged the street, a build hotel button and a
sell hotel button displayed that enables the player sell a hotel to get certain amount of cash.
The interface of Sell hotel: See section 3.3.2.

• Click roll dice button will end this scenario to the next one.
• Do trade: click a cell that is owned by other player, an information window is displayed. There is a trade on

the window that enable a player does trade. If the player clicks the trade button, a trade window is
displayed. Two players can offer price accept price reject the trade.
The interface of do trading, see section 3.3.5.

• Note all the windows have an ok button. A player can do nothing by click it. After do action, a player can

click it to close the window.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 102

[From Next Turn]
Do Trade

ClickCell

Sell Hotel

Use JOJFC get out jail

Pay $50 get out jail

Build Hotel

Mortgage

Unmortgage

Exit Game

Change option

Show info

[end Game]

Display Help

[Roll Dices]

Activity diagram Of the Montrealopoly Game
(III)

Pre Roll Dices

[Click exit Game]

[Click help]

[Click option]

[Click pay $50]

[Click use JOJFC]

[Click cell]

[Click sell hotel]

[Click trade]

[Click mortgage]

[Click build]

[Click unmortgage]

To Do
more

actions

[Click roll dice]

.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 103

6.4 Roll Dices
Starting with clicking the Roll dice button, this scenario has several actions that are done automatically by the
program rather than by the player. The program, without the interruption of human player automatically perform
these scenarios. (Seeing the next diagram.)

• Go to Jail: if a player lands on the go to jail cell, then the payer’s token will be move to the jail.
• Land on the Olympic Park, then he do nothing.
• Land on income tax cell or luxury cell, pay the tax by calling the doAction().
• Whenever pass the Go cell (or land on the Go cell,), the player collect $200.
• Land on the JFL card cell, the player will perform what is said on the card vi JFLCrad.DoAction().

However, if it is get out of jail free card, the player will keep the card.
• Land on a property owned by other player, he pays the rent.
• When player is bankrupt, the last player will be the winner.
• When balance is negative, the player will not allowed to make money now.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 104

Activity diagram Of the the Montrealopoly Game
(IV)

Roll Dices

[From pre Roll Dices]

[end Game]

RollDice

Pass
GO

Has a
winner

Pay
Income

Tax

Pay
Luxury

Tax

Do
Nothing

Take
JFL
Card

Token Move

Go
To
Jail

[In jail & not roll double]

[Not in jail / in jail and roll double]

[To post roll dice]

Land
on a

cell*

* Note: if land on
a cell and need to
pay rent, pay it.

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 105

6.5 Post-roll Dices

[From Roll Dices]
Do Trade

ClickCell

Sell Hotel

Make Money/declear bankruptcy

Buy property

Build Hotel

Mortgage

Unmortgage

Exit Game

Show info

[Game Over]

Display Help

[Next Turn]

Activity diagram Of the Montrealopoly Game
(V)

Post Roll Dices

[Click exit Game]

[Click help]

[Click pay $50]

[Click cell]

[Click sell hotel]

[Click trade]

[Click mortgage]

[Click build]

[Click unmortgage]

Has Winner

Change option
[Click option]

[balance <0]

To Do
more

actions

[roll dice]
If Roll
double

[Click next turn]

Montrealopoly Version: 1.8
 Date: 23/10/03

 Team Redmond, 2003 Page 106

This scenario contains all the activities that can be done after rolling the dices. Most of the activities are the same as
the pre roll dice scenario. The differences between the pre roll dice and post roll dice are:

The player can buy the property that he lands on if the property is not owned by any player.
There may be a winner since a player may fall into debt which he cannot pay.
A player can roll the dice again rather than pass the control to the next player.
After rolling the dice, a player can declare bankruptcy.

l Buy property/metro/utility/street

If the player is computer player, call autoPlay() to use AI rule. Display buy property/metro/street frame, the
player can press the confirm button to buy it (changes ownerID of the property, display players token on the
cell) or do nothing.

For the interface of buy property function, see section 3.3.3.

6.6 End Game Scenario

Activity diagram of
 the Montrealopoly game

(VI)
End Game

Display End Game Window

Exit GamePlay again

[game over][game start]

Display the end game window if there is a winner and display two buttons that enable the player to play again or exit
the game.

